Effects of Shenling Baizhu powder on pyrotinib-induced diarrhea: analysis of gut microbiota, metabonomics, and network pharmacology
-
Published:2022-12-17
Issue:1
Volume:17
Page:
-
ISSN:1749-8546
-
Container-title:Chinese Medicine
-
language:en
-
Short-container-title:Chin Med
Author:
Lai Jingjiang, Jiang Fengxian, Zhuo Xiaoli, Xu Xiaoying, Liu Lei, Yin Ke, Wang Jingliang, Zhao Jing, Xu Wei, Liu Hongjing, Wang Xuan, Jiang Wen, Wang Ke, Yang Shuping, Guo Honglin, Qi Fanghua, Yuan Xiaotian, Lin Xiaoyan, Fu GuobinORCID
Abstract
Abstract
Background
Shenling Baizhu Powder (SBP) is a traditional Chinese medicine (TCM) prescription, which has the good efficacy on gastrointestinal toxicity. In this study, we used gut microbiota analysis, metabonomics and network pharmacology to investigate the therapeutic effect of SBP on pyrotinib-induced diarrhea.
Methods
24 Rats were randomly divided into 4 groups: control group, SBP group (3.6 g/kg /bid SBP for 10 days), pyrotinib model group (80 mg/kg/qd pyrotinib) and pyrotinib + SBP treatment group. A 16S rRNA sequencing was used to detect the microbiome of rat fecal bowel. Metabolic profiles were collected by non-targeted metabolomics and key metabolic pathways were identified using MetaboAnalyst 5.0. The antitumor effect of SBP on cells treated with pyrotinib was measured using a CCK-8 assay. Network pharmacology was used to predict the target and action pathway of SBP in treating pyrotinib-related diarrhea.
Results
In vivo study indicated that SBP could significantly alleviate pyrotinib-induced diarrhea, reaching a therapeutic effect of 66.7%. SBP could regulate pyrotinib-induced microbiota disorder. LEfSe research revealed that the SBP could potentially decrease the relative abundance of Escherichia, Helicobacter and Enterobacteriaceae and increase the relative abundance of Lachnospiraceae, Bacilli, Lactobacillales etc. In addition, 25-Hydroxycholesterol, Guanidinosuccinic acid, 5-Hydroxyindolepyruvate and cAMP were selected as potential biomarkers of SBP for pyrotinib-induced diarrhea. Moreover, Spearman's analysis showed a correlation between gut microbiota and metabolite: the decreased 25-hydroxycholesterol in the pyrotinib + SBP treatment group was negatively correlated with Lachnospiraceae while positively correlated with Escherichia and Helicobacter. Meanwhile, SBP did not affect the inhibitory effect of pyrotinib on BT-474 cells and Calu-3 cells in vitro. Also, the network analysis further revealed that SBP treated pyrotinib-induced diarrhea through multiple pathways, including inflammatory bowel disease, IL-17 signaling pathway, pathogenic Escherichia coli infection and cAMP signaling pathway.
Conclusions
SBP could effectively relieve pyrotinib-induced diarrhea, revealing that intestinal flora and its metabolites may be involved in this process.
Funder
National Natural Science Foundation of China Taishan Scholar Foundation of Shandong Province 2021 Shandong Medical Association Clinical Research Fund Science and Technology Development Plans of Shandong Province Scientific Research Foundation of Shandong Province of Outstanding Young Scientists
Publisher
Springer Science and Business Media LLC
Subject
Complementary and alternative medicine,Pharmacology
Reference51 articles.
1. Ma F, Li Q, Chen S, Zhu W, Fan Y, Wang J, Luo Y, Xing P, Lan B, Li M, et al. Phase I study and biomarker analysis of pyrotinib, a novel irreversible pan-ErbB receptor tyrosine kinase inhibitor, in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol. 2017;35(27):3105–12. 2. Ma F, Ouyang Q, Li W, Jiang Z, Tong Z, Liu Y, Li H, Yu S, Feng J, Wang S, et al. Pyrotinib or lapatinib combined with capecitabine in HER2-positive metastatic breast cancer with prior taxanes, anthracyclines, and/or trastuzumab: a randomized phase II study. J Clin Oncol. 2019;37(29):2610–9. 3. Xu B, Yan M, Ma F, Hu X, Feng J, Ouyang Q, Tong Z, Li H, Zhang Q, Sun T, et al. Pyrotinib plus capecitabine versus lapatinib plus capecitabine for the treatment of HER2-positive metastatic breast cancer (PHOEBE): a multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 2021;22(3):351–60. 4. Zhou C, Li X, Wang Q, Gao G, Zhang Y, Chen J, Shu Y, Hu Y, Fan Y, Fang J, et al. Pyrotinib in HER2-mutant advanced lung adenocarcinoma after platinum-based chemotherapy: a multicenter, open-label, single-arm phase II study. J Clin Oncol. 2020;38(24):2753–61. 5. Yang G, Hao X, Hu J, Dong K, Xu H, Yang L, Zhang S, Yang Y, Xu F. Pyrotinib in HER2 heterogeneously mutated or amplified advanced non-small cell lung cancer patients: a retrospective real-world study (PEARL). J Nat Cancer Cent. 2021;1(4):139–46.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|