Abstract
Abstract
Aim of the study
We aimed to explore how weipiling (WPL) decoction WPL alleviates gastric precancerous lesions (GPLs) and uncover its anti-inflammatory roles in GPL treatment.
Materials and methods
The anti-GPL action mechanisms of WPL were analysed using a network pharmacological method. The WPL extract was prepared in a traditional way and evaluated for its major components using high-performance liquid chromatography with tandem mass spectrometry (HPLC–MS/MS). BALB/c mice were exposed to N-methyl-N-nitro-N-nitrosoguanidine (MNNG) (150 μg/mL) for 6 weeks to induce GPLs. GPL mice were administered WPL (3.75 g/kg/day and 15 g/kg/day) for an additional 8 weeks. Haematoxylin and eosin (H&E) staining was used to investigate histological alterations in gastric tissues. Expression of the T helper 1 (Th1) cell markers CD4+ and interferon-gamma (INF-γ) were tested using immunohistochemistry (IHC). Inflammatory protein and mRNA levels in the nuclear factor kappa B (NF-κB) pathway were detected using western blotting and a quantitative reverse transcription polymerase chain reaction (RT-qPCR), respectively.
Results
We identified and selected 110 active compounds and 146 targets from public databases and references. Four representative components of WPL were established and quantified by HPLC–MS/MS analysis. WPL attenuated MNNG-induced GPLs, including epithelial shedding, cavity fusion, basement membranes with asymmetrical thickness, intestinal metaplasia, dysplasia, pro-inflammatory Th1-cell infiltration, and INF-γ production, indicating that WPL prevents inflammation in the gastric mucosa. Furthermore, WPL reversed MNNG-induced activation of the IκB/NF-κB signalling pathway and subsequently attenuated the upregulation of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase (NOX)) family members NOX2 and NOX4.
Conclusion
WPL attenuated GPLs by controlling the generation of pro-inflammatory elements and inhibiting the NF-κB signalling pathway in vivo.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Postdoctoral Research Foundation of China
Special Project for Research and Development in Key areas of Guangdong Province
Guangdong Key Laboratory (Pi Wei diseases and Pi-deficiency syndrome) of State Administration of Traditional Chinese Medicine
Publisher
Springer Science and Business Media LLC
Subject
Complementary and alternative medicine,Pharmacology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献