Shirebi granules ameliorate acute gouty arthritis by inhibiting NETs-induced imbalance between immunity and inflammation

Author:

Li Xin,Mao Xia,Jiang Hong,Xia Cong,Fu Lu,Gao Wenjing,Chen Wenjia,Li Weijie,Wang Ping,Zhang Yanqiong,Xu Haiyu

Abstract

Abstract Background Acute gouty arthritis (AGA) is classified as ‘arthritis’ in traditional Chinese medicine (TCM) theory. Shirebi granules (SGs), derived from the classic prescription SiMiaoWan, exerts satisfying therapeutic efficacy in ameliorating AGA clinically. However, the underlying mechanisms of SGs against AGA remain unclarified. Methods AGA-related biological processes, signal pathways and biomarker genes were mined from the GEO database through bioinformatics. SGs components were systematically recognized using the UPLC-Q-TOF–MS/MS. A correlation network was established based on the biomarker genes and the chemical components, from which the signal pathway used for further study was selected. Finally, we established an AGA model using SD rats injected with monosodium urate (MSU) in the ankle joint for experimental validation. A combination of behavioral tests, H&E, safranin O- fast green, western blotting, and immunofluorescence were employed to reveal the mechanism of action of SGs on AGA. Results The deterioration of AGA was significantly related to the imbalance between immunity and inflammation, neutrophil chemotaxis and inflammatory factor activation. HDAC5, PRKCB, NFκB1, MPO, PRKCA, PIK3CA were identified to be the candidate targets of SGs against AGA, associated with neutrophil extracellular traps (NETs) signal pathway. Animal experiments demonstrated that SGs effectively repaired cartilage damage, blocked TLR4 activation, and inhibited the expression of NETs indicators and inflammatory factors. In addition, SGs prominently alleviated joint redness and swelling, improved joint dysfunction, inhibited inflammatory infiltration of AGA rats. Conclusion Our data reveal that SGs may effectively alleviate the disease severity of AGA by suppressing NETs-promoted imbalance between immunity and inflammation.

Funder

Scientific and technological the National Natural Science Foundation of China

Scientific and technological innovation project of the China Academy of Chinese Medical Sciences

Fundamental Research Funds for the Central public Welfare Research Institutes

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3