Author:
Xu Yu,Hou Jinxuan,Liu Zhengchun,Yu Haijun,Sun Wenjie,Xiong Jie,Liao Zhengkai,Zhou Fuxiang,Xie Conghua,Zhou Yunfeng
Abstract
Abstract
Background
Gene therapy is a promising therapeutic approach for cancer. Targeted expression of desired therapeutic proteins within the tumor is the best approach to reduce toxicity and improve survival. This study is to establish a more effective and less toxic gene therapy of cancer.
Methods
Combined gene therapy strategy with recombinant adenovirus expressing horseradish peroxidase (HRP) mediated by human telomerase reverse transcriptase (hTERT) promoter (AdhTERTHRP) and murine interleukin-12 (mIL-12) under the control of Cytomegalovirus (CMV) promoter (AdCMVmIL-12) was developed and evaluated against Lewis lung carcinoma (LLC) both in vivo and in vitro. The mechanism of action and systemic toxicities were also investigated.
Results
The combination of AdhTERTHRP/indole-3-acetic acid (IAA) treatment and AdCMVmIL-12 resulted in significant tumor growth inhibition and survival improvement compared with AdhTERTHRP/IAA alone (tumor volume, 427.4 ± 48.7 mm3
vs 581.9 ± 46.9 mm3, p = 0.005 on day 15; median overall survival (OS), 51 d vs 33 d) or AdCMVmIL-12 alone (tumor volume, 362.2 ± 33.8 mm3
vs 494.4 ± 70.2 mm3, p = 0.046 on day 12; median OS, 51 d vs 36 d). The combination treatment stimulated more CD4+ and CD8+ T lymphocyte infiltration in tumors, compared with either AdCMVmIL-12 alone (1.3-fold increase for CD4+ T cells and 1.2-fold increase for CD8+ T cells, P < 0.01) or AdhTERTHRP alone (2.1-fold increase for CD4+ T cells and 2.2-fold increase for CD8+ T cells, P < 0.01). The apoptotic cells in combination group were significantly increased in comparison with AdCMVmIL-12 alone group (2.8-fold increase, P < 0.01) or AdhTERTHRP alone group (1.6-fold increase, P < 0.01). No significant systematic toxicities were observed.
Conclusions
Combination gene therapy with AdhTERTHRP/IAA and AdCMVmIL-12 could significantly inhibit tumor growth and improve host survival in LLC model, without significant systemic adverse effects.
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference37 articles.
1. Alexandrova R: Experimental strategies in gene therapy of cancer. J Buon. 2009, 14 (Suppl 1): S23-32.
2. Fukazawa T, Matsuoka J, Yamatsuji T, Maeda Y, Durbin ML, Naomoto Y: Adenovirus-mediated cancer gene therapy and virotherapy (Review). Int J Mol Med. 2010, 25: 3-10.
3. Wirth T, Kuhnel F, Kubicka S: Telomerase-dependent gene therapy. Curr Mol Med. 2005, 5: 243-251. 10.2174/1566524053586536.
4. Fakhoury J, Nimmo GA, Autexier C: Harnessing telomerase in cancer therapeutics. Anticancer Agents Med Chem. 2007, 7: 475-483. 10.2174/187152007781058622.
5. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW: Specific association of human telomerase activity with immortal cells and cancer. Science. 1994, 266: 2011-2015. 10.1126/science.7605428.
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献