Clinical relevance of Neutral Endopeptidase (NEP/CD10) in melanoma

Author:

Velazquez Elsa F,Yancovitz Molly,Pavlick Anna,Berman Russell,Shapiro Richard,Bogunovic Dusan,O'Neill David,Yu Yi-Lo,Spira Joanna,Christos Paul J,Zhou Xi Kathy,Mazumdar Madhu,Nanus David M,Liebes Leonard,Bhardwaj Nina,Polsky David,Osman Iman

Abstract

Abstract Background Overexpression of Neutral Endopeptidase (NEP) has been reported in metastatic carcinomas, implicating NEP in tumor progression and suggesting a role for NEP inhibitors in its treatment. We investigated the role of NEP expression in the clinical progression of cutaneous melanoma. Methods We screened 7 melanoma cell lines for NEP protein expression. NEP-specific siRNA was transfected into the lines to examine the role of gene transcription in NEP expression. Immunohistochemistry was done for 93 specimens and correlated with clinicopathologic parameters. Thirty-seven metastatic melanoma specimens were examined for NEP transcript expression using Affymetrix GeneChips. In a subset of 25 specimens for which both transcript and protein expression was available, expression ratios were used to identify genes that co-express with NEP in GeneChip analysis. Results NEP was overexpressed in 4/7 human melanoma cell lines, and siRNA knock-down of NEP transcripts led to downregulation of its protein expression. NEP protein overexpression was significantly more common in metastatic versus primary tumors (P = 0.002). Twelve of 37 (32%) metastatic tumors had increased NEP transcript expression, and an association was observed between NEP transcript upregulation and protein overexpression (P < 0.0001). Thirty-eight genes were found to significantly co-express with NEP (p < 0.005). Thirty-three genes positively correlated with NEP, including genes involved in the MAP kinase pathway, antigen processing and presentation, apoptosis, and WNT signaling pathway, and 5 genes negatively correlated with NEP, including genes of focal adhesion and the notch signaling pathways. Conclusion NEP overexpression, which seems to be largely driven by increased transcription, is rare in primary melanoma and occurs late in melanoma progression. Functional studies are needed to better understand the mechanisms of NEP regulation in melanoma.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3