Author:
Pacchioni Sole Maria,Bissa Massimiliano,Zanotto Carlo,Morghen Carlo De Giuli,Illiano Elena,Radaelli Antonia
Abstract
Abstract
Background
The traditional smallpox vaccine, administered by scarification, was discontinued in the general population from 1980, because of the absence of new smallpox cases. However, the development of an effective prophylactic vaccine against smallpox is still necessary, to protect from the threat of deliberate release of the variola virus for bioterrorism and from new zoonotic infections, and to improve the safety of the traditional vaccine. Preventive vaccination still remains the most effective control and new vectors have been developed to generate recombinant vaccines against smallpox that induce the same immunogenicity as the traditional one. As protective antibodies are mainly directed against the surface proteins of the two infectious forms of vaccinia, the intracellular mature virions and the extracellular virions, combined proteins from these viral forms can be used to better elicit a complete and protective immunity.
Methods
Four novel viral recombinants were constructed based on the fowlpox genetic background, which independently express the vaccinia virus L1 and A27 proteins present on the mature virions, and the A33 and B5 proteins present on the extracellular virions. The correct expression of the transgenes was determined by RT-PCR, Western blotting, and immunofluorescence.
Results and conclusions
Using immunoprecipitation and Western blotting, the ability of the proteins expressed by the four novel FP
L1R
, FP
A27L
, FP
A33R
and FP
B5R
recombinants to be recognized by VV-specific hyperimmune mouse sera was demonstrated. By neutralisation assays, recombinant virus particles released by infected chick embryo fibroblasts were shown not be recognised by hyperimmune sera. This thus demonstrates that the L1R, A27L, A33R and B5R gene products are not inserted into the new viral progeny. Fowlpox virus replicates only in avian species, but it is permissive for entry and transgene expression in mammalian cells, while being immunologically non–cross-reactive with vaccinia virus. These recombinants might therefore represent safer and more promising immunogens that can circumvent neutralisation by vector-generated immunity in smallpox-vaccine-experienced humans.
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference50 articles.
1. Whitley RJ: Smallpox: a potential agent of bioterrorism. Antiviral Res. 2003, 57: 7-12. 10.1016/S0166-3542(02)00195-X.
2. Vogel S, Sardy M, Glos KKHC, Ruzicka T, Wollenberg A: The Munich outbreak of cutaneous cowpox infection: transmission by infected pet rats. Acta Derm Venereol. 2012, 92: 126-131. 10.2340/00015555-1227.
3. Cardeti G, Brozzi A, Eleni C, Polici N, D'Alterio G, Carletti F, Scicluna MT, Castilletti C, Capobianchi M, Di Caro A, Autorino GL, Amaddeo D: Cowpox virus in llama, Italy. Emerg Infect Dis. 2011, 17: 1513-1515.
4. Megid J, Borges IA, Trindade GS, Appolinário CM, Ribeiro MG, Allendorf SD, Antunes JM, Silva-Fernandes AT, Kroon EG: Vaccinia virus zoonotic infection, São Paulo State, Brazil. Emerg Infect Dis. 2012, 18: 189-191.
5. Lewis-Jones S: Zoonotic poxvirus infections in humans. Curr Opin Infect Dis. 2004, 17: 81-89. 10.1097/00001432-200404000-00003.
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献