Wnt/beta-catenin signaling in embryonic stem cell converted tumor cells

Author:

Peng Xinrong,Liu Tao,Wang Ying,Yan Qiaoling,Jin Huajun,Li Linfang,Qian Qijun,Wu Mengchao

Abstract

Abstract Background Embryonic stem cells (ESCs) are pluripotent stem cells and can form tumors containing cells from all three germ layers. Similarities between pluripotent stem cells and malignant tumor cells have been identified. The purpose of this study was to obtain ESCs-converted tumor cell lines and to investigate the mechanism of malignancy in pluripotent stem cells. Methods Mouse ESCs were subcutaneously injected into nude mice to obtain tumors from which a tumor-like cell line (ECCs1) was established by culturing the cells in chemical-defined N2B27 medium supplied with two small molecular inhibitors CHIR99021 and PD0325901 (2i). The ECCs1 were then subcutaneously injected into nude mice again to obtain tumors from which another tumor-like cells line (ECCs2) was established in the same 2i medium. The malignant degree of ESCs, ECCs1 and ECCs2 was compared and the underlying mechanism involved in the malignancy development of ESCs was examined. Results The three ESCs, ECCs1 and ECCs2 cell lines were cultured in the same 2i condition and showed some likeness such as Oct4-expression and long-term expansion ability. However, the morphology and the tumor-formation ability of the cell lines were different. We identified that ECCs1 and ECCs2 gradually acquired malignancy. Moreover, Wnt signaling-related genes such as CD133 and β-catenin expression were up-regulated and Frizzled related protein (FRP) was down-regulated during the tumor development of ESCs. Conclusions The two tumor-like cell lines ECCs1 and ECCs2 stand for early malignant development stage of ESCs and the ECCs2 was more malignant than the ECCs1. Moreover, we identified that Wnt/β-catenin signaling played an important role in the malignancy process of ESCs.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3