Author:
Buckley Michael T,Yoon Joanne,Yee Herman,Chiriboga Luis,Liebes Leonard,Ara Gulshan,Qian Xiaozhong,Bajorin Dean F,Sun Tung-Tien,Wu Xue-Ru,Osman Iman
Abstract
Abstract
Background
Treatment options for patients with recurrent superficial bladder cancer are limited, necessitating aggressive exploration of new treatment strategies that effectively prevent recurrence and progression to invasive disease. We assessed the effects of belinostat (previously PXD101), a novel histone deacetylase inhibitor, on a panel of human bladder cancer cell lines representing superficial and invasive disease, and on a transgenic mouse model of superficial bladder cancer.
Methods
Growth inhibition and cell cycle distribution effect of belinostat on 5637, T24, J82, and RT4 urothelial lines were assessed. Ha-ras transgenic mice with established superficial bladder cancer were randomized to receive either belinostat or vehicle alone, and assessed for bladder weight, hematuria, gene expression profiling, and immunohistochemistry (IHC).
Results
Belinostat had a significant linear dose-dependent growth inhibition on all cell lines (IC50 range of 1.0–10.0 μM). The 5637 cell line, which was derived from a superficial papillary tumor, was the most sensitive to treatment. Belinostat (100 mg/kg, intraperitoneal, 5 days each week for 3 weeks) treated mice had less bladder weight (p < 0.05), and no hematuria compared with 6/10 control mice that developed at least one episode. IHC of bladder tumors showed less cell proliferation and a higher expression of p21WAF1 in the belinostat-treated mice. Gene expression profile analysis revealed 56 genes significantly different in the treated group; these included the upregulation of p21WAF1, induction of core histone deacetylase (HDAC), and cell communication genes.
Conclusion
Our data demonstrate that belinostat inhibits bladder cancer and supports the clinical evaluation of belinostat for the treatment of patients with superficial bladder cancer.
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference47 articles.
1. Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E, Feuer EJ, Thun MJ: Cancer statistics, 2004. CA Cancer J Clin. 2004, 54: 8-29.
2. Society AC. What are the key statistics for bladder cancer?. Accessed January 2007, [http://seer.cancer.gov/statfacts/html/urinb.html]
3. Earel JK, VanOosten RL, Griffith TS: Histone deacetylase inhibitors modulate the sensitivity of tumor necrosis factor-related apoptosis-inducing ligand-resistant bladder tumor cells. Cancer Res. 2006, 66: 499-507. 10.1158/0008-5472.CAN-05-3017.
4. Kelly WK, Richon VM, O'Connor O, Curley T, MacGregor-Curtelli B, Tong W, Klang M, Schwartz L, Richardson S, Rosa E, Drobnjak M, Cordon-Cordo C, Chiao JH, Rifkind R, Marks PA, Scher H: Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin Cancer Res. 2003, 9: 3578-88.
5. Tumber A, Collins LS, Petersen KD, Thougaard A, Christiansen SJ, Dejligbjerg M, Jensen PB, Sehested M, Ritchie JW: The histone deacetylase inhibitor PXD101 synergises with 5-fluorouracil to inhibit colon cancer cell growth in vitro and in vivo. Cancer Chemother Pharmacol. 2007, 60: 275-83. 10.1007/s00280-006-0374-7.
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献