Author:
von Euw Erika M,Barrio María M,Furman David,Bianchini Michele,Levy Estrella M,Yee Cassian,Li Yongqing,Wainstok Rosa,Mordoh José
Abstract
Abstract
Background
In the present study, we demonstrate, in rigorous fashion, that human monocyte-derived immature dendritic cells (DCs) can efficiently cross-present tumor-associated antigens when co-cultured with a mixture of human melanoma cells rendered apoptotic/necrotic by γ irradiation (Apo-Nec cells).
Methods
We evaluated the phagocytosis of Apo-Nec cells by FACS after PKH26 and PKH67 staining of DCs and Apo-Nec cells at different times of coculture. The kinetics of the process was also followed by electron microscopy. DCs maturation was also studied monitoring the expression of specific markers, migration towards specific chemokines and the ability to cross-present in vitro the native melanoma-associated Ags MelanA/MART-1 and gp100.
Results
Apo-Nec cells were efficiently phagocytosed by immature DCs (iDC) (55 ± 10.5%) at 12 hs of coculture. By 12–24 hs we observed digested Apo-Nec cells inside DCs and large empty vacuoles as part of the cellular processing. Loading with Apo-Nec cells induced DCs maturation to levels achieved using LPS treatment, as measured by: i) the decrease in FITC – Dextran uptake (iDC: 81 ± 5%; DC/Apo-Nec 33 ± 12%); ii) the cell surface up-regulation of CD80, CD86, CD83, CCR7, CD40, HLA-I and HLA-II and iii) an increased in vitro migration towards MIP-3β. DC/Apo-Nec isolated from HLA-A*0201 donors were able to induce >600 pg/ml IFN-γ secretion of CTL clones specific for MelanA/MART-1 and gp100 Ags after 6 hs and up to 48 hs of coculture, demonstrating efficient cross-presentation of the native Ags. Intracellular IL-12 was detected in DC/Apo-Nec 24 hs post-coculture while IL-10 did not change.
Conclusion
We conclude that the use of a mixture of four apoptotic/necrotic melanoma cell lines is a suitable source of native melanoma Ags that provides maturation signals for DCs, increases migration to MIP-3β and allows Ag cross-presentation. This strategy could be exploited for vaccination of melanoma patients.
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference41 articles.
1. Banchereau J, Steinman R: Dendritic cells and the control of immunity. Nature. 1998, 392: 245-252. 10.1038/32588.
2. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K: Immunobiology of dendritic cells. Annu Rev Immunol. 2000, 18: 767-811. 10.1146/annurev.immunol.18.1.767.
3. De Smedt T, Pajal B, Muraille E, Lespagnard L, Heinen E, De Baetselier P, Leo O, Moser M: Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo. J Exp Med. 1996, 184: 1413-1424. 10.1084/jem.184.4.1413.
4. Sparwasser T, Koch ES, Vabulas RM, Heeg K, Lipford GB, Ellwart JW, Wagner H: Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur J Immunol. 1998, 28: 2045-2054. 10.1002/(SICI)1521-4141(199806)28:06<2045::AID-IMMU2045>3.0.CO;2-8.
5. Verdijk RM, Mutis T, Esendam B, Kamp J, Melief CJ, Brand A, Goulmy E: Polyriboinosinic polyribocytidylic acid (poly (I: C)) induces stable maturation of functionally active human dendritic cells. J Immunol. 1999, 163: 57-61.
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献