Author:
Alves Brunna E,Montalvao Silmara AL,Aranha Francisco JP,Lorand-Metze Irene,De Souza Carmino A,Annichino-Bizzacchi Joyce M,De Paula Erich V
Abstract
Abstract
Background
Septic shock is the most feared complication of chemotherapy-induced febrile neutropenia. So far, there are no robust biomarkers that can stratify patients to the risk of sepsis complications. The VEGF-A axis is involved in the control of microvascular permeability and has been involved in the pathogenesis of conditions associated with endothelial barrier disruption such as sepsis. sFlt-1 is a soluble variant of the VEGF-A receptor VEGFR-1 that acts as a decoy receptor down-regulating the effects of VEGF-A. In animal models of sepsis, sFlt-1 was capable to block the barrier-breaking negative effects of VEGF-A and to significantly decrease mortality. In non-neutropenic patients, sFlt-1 has been shown to be a promising biomarker for sepsis severity.
Methods
We prospectively evaluated concentrations of sFlt-1 and VEGF-A at different time-points during febrile neutropenia, and evaluated the association of these levels with sepsis severity and septic shock development.
Results
Neutropenic patients that evolved with septic shock (n = 10) presented higher levels of sFlt-1 and VEGF-A measured 48 hours after fever onset than patients with non-complicated sepsis (n = 31) and levels of these biomarkers correlated with sepsis severity scores. Estimation of the diagnostic accuracy of sFlt-1 levels for the discrimination of patients that evolved to septic shock yielded promising results in our study population.
Discussion
Our data suggest that sFlt-1 and VEGF-A could be useful biomarkers for sepsis severity in patients with febrile neutropenia. In addition, the kinetics of sFlt-1 release in patients that evolve to septic shock suggest that the sFlt-1 could be a salvage compensatory mechanism in patients with septic shock, but that the magnitude of the sFlt-1 release observed in human sepsis is not sufficient to reproduce the beneficial anti-VEGF-A effects observed in animal models of sepsis.
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献