Author:
Dev Harveer,Rickman David,Sooriakumaran Prasanna,Srivastava Abhishek,Grover Sonal,Leung Robert,Kim Robert,Kitabayashi Naoki,Esqueva Raquel,Park Kyung,Padilla Jessica,Rubin Mark,Tewari Ashutosh
Abstract
Abstract
Background
RNA quality is believed to decrease with ischaemia time, and therefore open radical prostatectomy has been advantageous in allowing the retrieval of the prostate immediately after its devascularization. In contrast, robotic-assisted laparoscopic radical prostatectomies (RALP) require the completion of several operative steps before the devascularized prostate can be extirpated, casting doubt on the validity of this technique as a source for obtaining prostatic tissue. We seek to establish the integrity of our biobanking process by measuring the RNA quality of specimens derived from robotic-assisted laparoscopic radical prostatectomy.
Methods
We describe our biobanking process and report the RNA quality of prostate specimens using advanced electrophoretic techniques (RNA Integrity Numbers, RIN). Using multivariate regression analysis we consider the impact of various clinicopathological correlates on RNA integrity.
Results
Our biobanking process has been used to acquire 1709 prostates, and allows us to retain approximately 40% of the prostate specimen, without compromising the histopathological evaluation of patients. We collected 186 samples from 142 biobanked prostates, and demonstrated a mean RIN of 7.25 (standard deviation 1.64) in 139 non-stromal samples, 73% of which had a RIN ≥ 7. Multivariate regression analysis revealed cell type - stromal/epithelial and benign/malignant - and prostate volume to be significant predictors of RIN, with unstandardized coefficients of 0.867(p = 0.001), 1.738(p < 0.001) and -0.690(p = 0.009) respectively. A mean warm ischaemia time of 120 min (standard deviation 30 min) was recorded, but multivariate regression analysis did not demonstrate a relationship with RIN within the timeframe of the RALP procedure.
Conclusions
We demonstrate the robustness of our protocol - representing the concerted efforts of dedicated urology and pathology departments - in generating RNA of sufficient concentration and quality, without compromising the histopathological evaluation and diagnosis of patients. The ischaemia time associated with our prostatectomy technique using a robotic platform does not negatively impact on biobanking for RNA studies.
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference20 articles.
1. Jemal A, Siegel R, Xu J, Ward E: Cancer statistics, 2010. CA Cancer J Clin. 2010, 60: 277-300. 10.3322/caac.20073.
2. Schlomm T, Hellwinkel OJ, Buness A, Ruschhaupt M, Lubke AM, Chun FK, Simon R, Budaus L, Erbersdobler A, Graefen M: Molecular cancer phenotype in normal prostate tissue. Eur Urol. 2009, 55: 885-890. 10.1016/j.eururo.2008.04.105.
3. Orvieto MA, Patel VR: Evolution of robot-assisted radical prostatectomy. Scand J Surg. 2009, 98: 76-88.
4. Tewari AK, Srivastava A, Mudaliar K, Tan GY, Grover S, El Douaihy Y, Peters D, Leung R, Yadav R, John M: Anatomical retro-apical technique of synchronous (posterior and anterior) urethral transection: a novel approach for ameliorating apical margin positivity during robotic radical prostatectomy. BJU Int. 2010,
5. Best S, Sawers Y, Fu VX, Almassi N, Huang W, Jarrard DF: Integrity of prostatic tissue for molecular analysis after robotic-assisted laparoscopic and open prostatectomy. Urology. 2007, 70: 328-332. 10.1016/j.urology.2007.04.005.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献