Author:
Ayache Saleh,Panelli Monica C,Byrne Karen M,Slezak Stefanie,Leitman Susan F,Marincola Francesco M,Stroncek David F
Abstract
Abstract
Background
The culture and expansion of human cells for clinical use requires the presence of human serum or plasma in culture media. Although these supplements have been extensively characterized in their chemical composition, only recently it has been possible to provide by high throughput protein analysis, a comprehensive profile of the soluble factors contributing to cell survival. This study analyzed and compared the presence of 100 proteins including chemokines, cytokines and soluble factors in six different types of media supplements: serum, plasma, recalcified plasma, heat inactivated serum, heat inactivated plasma and heat inactivated recalcified plasma.
Methods
Serum, plasma, recalcified plasma, and heat inactivated supplements were prepared from ten healthy subjects. The levels of 100 soluble factors were measured in each sample using a multiplexed ELISA assay and compared by Eisen hierarchical clustering analysis.
Results
A comparison of serum and plasma levels of soluble factors found that 2 were greater in plasma but 18 factors were greater in serum including 11 chemokines. The levels of only four factors differed between recalcified plasma and plasma. Heat inactivation had the greatest effect on soluble factors. Supervised Eisen hierarchical clustering indicated that the differences between heat inactivated supplements and those that were not were greater than the differences within these two groups. The levels of 36 factors differed between heat inactivated plasma and plasma. Thirty one of these factors had a lower concentration in heat inactivated plasma including 12 chemokines, 4 growth factors, 4 matrix metalloproteases, and 3 adhesion molecules. Heat inactivated decalcified plasma is often used in place of heat inactivated serum and the levels of 19 soluble factors differed between these two supplements.
Conclusion
Our report provides a comprehensive protein profile of serum, plasma recalcified plasma, and heat inactivated supplements. This profile represents a qualitative and quantitative database that can aid in the selection of the appropriate blood derived supplement for human cell cultures with special requirements.
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference19 articles.
1. Wong EC, Maher VE, Hines K, Lee J, Carter CS, Goletz T, Kopp W, Mackall CL, Berzofsky J, Read EJ: Development of a clinical-scale method for generation of dendritic cells from PBMC for use in cancer immunotherapy. Cytotherapy. 2001, 3: 19-29. 10.1080/146532401753156377.
2. Pullarkat V, Lau R, Lee SM, Bender JG, Weber JS: Large-scale monocyte enrichment coupled with a closed culture system for the generation of human dendritic cells. J Immunol Methods. 2002, 267: 173-183. 10.1016/S0022-1759(02)00181-3.
3. Tuyaerts S, Noppe SM, Corthals J, Breckpot K, Heirman C, De Greef C, Van RI, Thielemans K: Generation of large numbers of dendritic cells in a closed system using Cell Factories. J Immunol Methods. 2002, 264: 135-151. 10.1016/S0022-1759(02)00099-6.
4. Reichardt VL, Milazzo C, Brugger W, Einsele H, Kanz L, Brossart P: Idiotype vaccination of multiple myeloma patients using monocyte-derived dendritic cells. Haematologica. 2003, 88: 1139-1149.
5. Rosenberg SA: The emergence of modern cancer immunotherapy. Ann Surg Oncol. 2005, 12: 344-346. 10.1245/ASO.2005.01.904.