Serum microRNAs as biomarkers for recurrence in melanoma

Author:

Friedman Erica B,Shang Shulian,de Miera Eleazar Vega-Saenz,Fog Jacob Ulrik,Teilum Maria Wrang,Ma Michelle W,Berman Russell S,Shapiro Richard L,Pavlick Anna C,Hernando Eva,Baker Adam,Shao Yongzhao,Osman Iman

Abstract

Abstract Background Identification of melanoma patients at high risk for recurrence and monitoring for recurrence are critical for informed management decisions. We hypothesized that serum microRNAs (miRNAs) could provide prognostic information at the time of diagnosis unaccounted for by the current staging system and could be useful in detecting recurrence after resection. Methods We screened 355 miRNAs in sera from 80 melanoma patients at primary diagnosis (discovery cohort) using a unique quantitative reverse transcription-PCR (qRT-PCR) panel. Cox proportional hazard models and Kaplan-Meier recurrence-free survival (RFS) curves were used to identify a miRNA signature with prognostic potential adjusting for stage. We then tested the miRNA signature in an independent cohort of 50 primary melanoma patients (validation cohort). Logistic regression analysis was performed to determine if the miRNA signature can determine risk of recurrence in both cohorts. Selected miRNAs were measured longitudinally in subsets of patients pre-/post-operatively and pre-/post-recurrence. Results A signature of 5 miRNAs successfully classified melanoma patients into high and low recurrence risk groups with significant separation of RFS in both discovery and validation cohorts (p = 0.0036, p = 0.0093, respectively). Significant separation of RFS was maintained when a logistic model containing the same signature set was used to predict recurrence risk in both discovery and validation cohorts (p < 0.0001, p = 0.033, respectively). Longitudinal expression of 4 miRNAs in a subset of patients was dynamic, suggesting miRNAs can be associated with tumor burden. Conclusion Our data demonstrate that serum miRNAs can improve accuracy in identifying primary melanoma patients with high recurrence risk and in monitoring melanoma tumor burden over time.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3