Retinal pigment epithelial cells secrete neurotrophic factors and synthesize dopamine: possible contribution to therapeutic effects of RPE cell transplantation in Parkinson's disease

Author:

Ming Ming,Li Xuping,Fan Xiaolan,Yang Dehua,Li Liang,Chen Sheng,Gu Qing,Le Weidong

Abstract

Abstract Background New strategies for the treatment of Parkinson's disease (PD) are shifted from dopamine (DA) replacement to regeneration or restoration of the nigro-striatal system. A cell therapy using human retinal pigment epithelial (RPE) cells as substitution for degenerated dopaminergic (DAergic) neurons has been developed and showed promising prospect in clinical treatment of PD, but the exact mechanism underlying this therapy is not fully elucidated. In the present study, we investigated whether the beneficial effects of this therapy are related to the trophic properties of RPE cells and their ability to synthesize DA. Methods We evaluated the protective effects of conditioned medium (CM) from cultured RPE cells on the DAergic cells against 6-hydroxydopamine (6-OHDA)- and rotenone-induced neurotoxicity and determined the levels of glial cell derived neurotrophic factor (GDNF) and brain derived neurotrophic factor (BDNF) released by RPE cells. We also measured the DA synthesis and release. Finally we transplanted microcarriers-RPE cells into 6-OHDA lesioned rats and observed the improvement in apomorphine-induced rotations (AIR). Results We report here: (1) CM from RPE cells can secret trophic factors GDNF and BDNF, and protect DAergic neurons against the 6-OHDA- and rotenone-induced cell injury; (2) cultured RPE cells express L-dopa decarboxylase (DDC) and synthesize DA; (3) RPE cells attached to microcarriers can survive in the host striatum and improve the AIR in 6-OHDA-lesioned animal model of PD; (4) GDNF and BDNF levels are found significantly higher in the RPE cell-grafted tissues. Conclusion These findings indicate the RPE cells have the ability to secret GDNF and BDNF, and synthesize DA, which probably contribute to the therapeutic effects of RPE cell transplantation in PD.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3