Isolation and culture of fibroblasts from endoscopic duodenal biopsies of celiac patients

Author:

Roncoroni Leda,Elli Luca,Doneda Luisa,Piodi Luca,Ciulla Michele M,Paliotti Roberta,Bardella Maria Teresa

Abstract

Abstract Background Fibroblasts are actually considered pivotal in inflammation and tissue remodelling process and for these reasons they are involved in the pathogenesis of autoimmune disorders such as celiac disease. Investigations to define the role of fibroblasts in celiac diseases are obstructed by the absence of specific models. Our objective is to isolate and culture primary fibroblasts from endoscopic duodenal biopsies of celiac and non-celiac subjects, to analyze their growth patterns and the morphometric characteristics. Methods 60 duodenal bioptic specimens from 20 celiac patients and 114 from 38 non-celiac subjects were mechanically chopped and enzymatically digested in order to obtain primary cell cultures. Growth patterns, karyotype (Q-banding analysis), expression of typing proteins (fibroblast surface protein and cytokeratin 20) and morphometric parameters (diameters and their ratio, perimeter, area and perimeter/area ratio at computerised image analysis) were investigated on cultured cells. Results Primary cells were successfully cultured in 78% of the collected duodenal biopsies. Cultured cells, expressing the fibroblast surface protein, were negative for cytokeratine 20 and maintained a normal kariotype. Cells grew slowly without differences between the celiac and the non celiac group. Morphometric analysis of celiac fibroblasts revealed significantly increased dimensions, with a preserved diameters ratio, and a reduced perimeter/area ratio. Conclusion For the first time this study demonstrates the feasibility of culturing primary fibroblast cell from endoscopic duodenal biopsies in celiac and non-celiac subjects, opening a new window of opportunity in studies intended to establish the role of fibroblasts as a possible partaker in the pathogenesis of the celiac mucosal damage.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3