Author:
Mamidi Murali Krishna,Singh Gurbind,Husin Juani Mazmin,Nathan Kavitha Ganesan,Sasidharan Gopinath,Zakaria Zubaidah,Bhonde Ramesh,Majumdar Anish Sen,Das Anjan Kumar
Abstract
Abstract
Background
Numerous preclinical and clinical studies have investigated the regenerative potential and the trophic support of mesenchymal stem cells (MSCs) following their injection into a target organ. Clinicians favor the use of smallest bore needles possible for delivering MSCs into vascular organs like heart, liver and spleen. There has been a concern that small needle bore sizes may be detrimental to the health of these cells and reduce the survival and plasticity of MSCs.
Methods
In this report, we aimed to investigate the smallest possible bore size needle which would support the safe delivery of MSCs into various tissues for different clinical or cosmetic applications. To accomplish this we injected cells via needle sizes 24, 25 and 26 G attached to 1 ml syringe in the laboratory and collected the cells aseptically. Control cells were ejected via 1 ml syringe without any needle. Thereafter, the needle ejected cells were cultured and characterized for their morphology, attachment, viability, phenotypic expression, differentiation potential, cryopreservation and in vivo migration abilities. In the second phase of the study, cells were injected via 26 G needle attached to 1 ml syringe for 10 times.
Results
Similar phenotypic and functional characteristics were observed between ejected and control group of cells. MSCs maintained their cellular and functional properties after single and multiple injections.
Conclusions
This study proves that 26 G bore size needles can be safely used to inject MSCs for clinical/therapeutics purposes.
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference33 articles.
1. Agashi K, Chau DY, Shakesheff KM: The effect of delivery via narrow-bore needles on mesenchymal cells. Regen Med. 2009, 4 (1): 49-64. 10.2217/17460751.4.1.49.
2. Malgieri A, Kantzari E, Patrizi MP, Gambardella S: Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art. Int J Clin Exp Med. 2010, 3 (4): 248-269.
3. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP: Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissue. Transplantation. 1968, 6: 230-234. 10.1097/00007890-196803000-00009.
4. Gala K, Burdzińska A, Idziak M, Makula J, Pączek L: Characterization of bone marrow derived rat mesenchymal stem cells depending on donor age. Cell Biol Int. 2011, 35 (10): 1055-1062. 10.1042/CBI20100586.
5. Mamidi MK, Pal R, Mori NA, Arumugam G, Thrichelvam ST, Noor PJ, Abdullah HM, Gupta PK, Das AK, Zakaria Z, Bhonde R: Co-culture of mesenchymal-like stromal cells derived from human foreskin permits long term propagation and differentiation of human embryonic stem cells. J Cell Biochem. 2011, 112 (5): 1353-1363. 10.1002/jcb.23052.
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献