T cell avidity and tumor recognition: implications and therapeutic strategies

Author:

McKee Mark D,Roszkowski Jeffrey J,Nishimura Michael I

Abstract

Abstract In the last two decades, great advances have been made studying the immune response to human tumors. The identification of protein antigens from cancer cells and better techniques for eliciting antigen specific T cell responses in vitro and in vivo have led to improved understanding of tumor recognition by T cells. Yet, much remains to be learned about the intricate details of T cell – tumor cell interactions. Though the strength of interaction between T cell and target is thought to be a key factor influencing the T cell response, investigations of T cell avidity, T cell receptor (TCR) affinity for peptide-MHC complex, and the recognition of peptide on antigen presenting targets or tumor cells reveal complex relationships. Coincident with these investigations, therapeutic strategies have been developed to enhance tumor recognition using antigens with altered peptide structures and T cells modified by the introduction of new antigen binding receptor molecules. The profound effects of these strategies on T cell – tumor interactions and the clinical implications of these effects are of interest to both scientists and clinicians. In recent years, the focus of much of our work has been the avidity and effector characteristics of tumor reactive T cells. Here we review concepts and current results in the field, and the implications of therapeutic strategies using altered antigens and altered effector T cells.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference160 articles.

1. Bhattacharya-Chatterjee M, Chatterjee SK, Foon KA: The anti-idiotype vaccines for immunotherapy. Curr Opin Mol Ther. 2001, 3 (1): 63-69.

2. Haigh PI, Difronzo LA, Gammon G, Morton DL: Vaccine therapy for patients with melanoma. Oncology (Huntingt). 1999, 13 (11): 1561-74; discussion 1574 passim..

3. Nestle FO: Dendritic cell vaccination for cancer therapy. Oncogene. 2000, 19 (56): 6673-6679. 10.1038/sj.onc.1204095.

4. Zeh HJIII, Perry-Lalley D, Dudley ME, Rosenberg SA, Yang JC: High avidity CTLs for two self-antigens demonstrate superior in vitro and in vivo antitumor efficacy. JImmunol. 1999, 162 (2): 989-

5. Bakker AB, Schreurs MW, de Boer AJ, Kawakami Y, Rosenberg SA, Adema GJ, Figdor CG: Melanocyte lineage-specific antigen gp100 is recognized by melanoma-derived tumor-infiltrating lymphocytes. JExpMed. 1994, 179 (3): 1005-

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3