Author:
Zhang Yong,Ye Jianwei,Chen Dazhi,Zhao Xinyi,Xiao Xingjun,Tai Sheng,Yang Wei,Zhu Dahai
Abstract
Abstract
Background
Limb-girdle muscular dystrophy (LGMD) is a group of heterogeneous muscular disorders with autosomal dominant and recessive inheritance, in which the pelvic or shoulder girdle musculature is predominantly or primarily involved. Although analysis of the defective proteins has shed some light onto their functions implicated in the etiology of LGMD, our understanding of the molecular mechanisms underlying muscular dystrophy remains incomplete.
Methods
To give insight into the molecular mechanisms of AR-LGMD, we have examined the differentially expressed gene profiling between the relative normal and pathological skeletal muscles from the same AR-LGMD patient with the differential display RT-PCR approach. The research subjects came from a Chinese AR-LGMD family with three affected sisters.
Results
In this report, we have identified 31 known genes and 12 unknown ESTs, which were differentially expressed between the relative normal and dystrophic muscle from the same LGMD patient. The expression of many genes encoding structural proteins of skeletal muscle fibers (such as titin, myosin heavy and light chains, and nebulin) were dramatically down-regulated in dystrophic muscles compared to the relative normal muscles. The genes, reticulocalbin 1, kinectin 1, fatty acid desaturase 1, insulin-like growth factor binding protein 5 (IGFBP5), Nedd4 family interacting protein 1 (NDFIP1), SMARCA2 (SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 2), encoding the proteins involved in signal transduction and gene expression regulation were up-regulated in the dystrophic muscles.
Conclusion
The functional analysis of these expression-altered genes in the pathogenesis of LGMD could provide additional information for understanding possible molecular mechanisms of LGMD development.
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference24 articles.
1. Bushby KMD: The limb-girdle muscular dystrophies: multiple genes, multiple mechanisms. Hum Mol Genet. 1999, 8: 1875-1882. 10.1093/hmg/8.10.1875.
2. Zatz M, Vainzof M, Passos-Bueno MR: Limb-girdle muscular dystrophy: one gene with different phenotypes, one phenotype with different genes. Curr Opin Neurol. 2000, 13 (5): 511-517. 10.1097/00019052-200010000-00002.
3. Arikawa E, Hoffman EP, Kaido M, Nonaka I, Sugita H, Arahata K: The frequency of patients with dystrophin abnormalities in a limb-girdle patient population. Neurology. 1991, 41: 1491-1496.
4. Hauser MA, Horrigan SK, Salmikangas P, Torian UM, Viles KD, Dancel R, Tim RW, Taivainen A, Bartoloni L, Gilchrist JM, Stajich JM, Gaskell PC, Gilbert JR, Vance JM, Pericak-Vance MA, Carpen O, Westbrook CA, Speer MC: Myotilin is mutated in limb girdle muscular dystrophy 1A. Hum Mol Genet. 2000, 9: 2141-2147. 10.1093/hmg/9.14.2141.
5. van der Kooi AJ, van Meegen M, Ledderhof TM, McNally EM, de Visser M, Bolhuis PA: Genetic localization of a newly recognized autosomal dominant limb-girdle muscular dystrophy with cardiac involvement (LGMD1B) to chromosome 1q11-21. Am J Hum Genet. 1997, 60: 891-895.