Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats

Author:

Leu Steve,Lin Yu-Chun,Yuen Chun-Man,Yen Chia-Hung,Kao Ying-Hsien,Sun Cheuk-Kwan,Yip Hon-Kan

Abstract

Abstract Background The therapeutic effect of adipose-derived mesenchymal stem cells (ADMSCs) on brain infarction area (BIA) and neurological status in a rat model of acute ischemic stroke (IS) was investigated. Methods Adult male Sprague-Dawley (SD) rats (n = 30) were divided into IS plus intra-venous 1 mL saline (at 0, 12 and 24 h after IS induction) (control group) and IS plus intra-venous ADMSCs (2.0 × 106) (treated interval as controls) (treatment group) after occlusion of distal left internal carotid artery. The rats were sacrificed and brain tissues were harvested on day 21 after the procedure. Results The results showed that BIA was larger in control group than in treatment group (p < 0.001). The sensorimotor functional test (Corner test) identified a higher frequency of turning movement to left in control group than in treatment group (p < 0.05). mRNA expressions of Bax, caspase 3, interleukin (IL)-18, toll-like receptor-4 and plasminogen activator inhibitor-1 were higher, whereas Bcl-2 and IL-8/Gro were lower in control group than in treatment group (all p < 0.05). Western blot demonstrated a lower CXCR4 and stromal-cell derived factor-1 (SDF-1) in control group than in treatment group (all p < 0.01). Immunohistofluorescent staining showed lower expressions of CXCR4, SDF-1, von Willebran factor and doublecortin, whereas the number of apoptotic nuclei on TUNEL assay was higher in control group than in treatment group (all p < 0.001). Immunohistochemical staining showed that cellular proliferation and number of small vessels were lower but glial fibrillary acid protein was higher in control group than in treatment group (all p < 0.01). Conclusions ADMSC therapy significantly limited BIA and improved sensorimotor dysfunction after acute IS.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3