Classification of soybeans from different habitats based on metabolomic–transcriptomic integration

Author:

Wang Jinghui,Zheng QiyouORCID,Wang Chenxu,Zhou Ao

Abstract

AbstractSoybeans are a significant agricultural product in China, with certain geographical locations often yielding higher quality, and thus more expensive, soybean crops. In this study, metabolomics and transcriptomics analyses were conducted on soybean samples from nine regions in Heilongjiang and Liaoning Provinces using untargeted liquid chromatography–mass spectrometry (LC–MS) and Illumina sequencing technologies. The primary objective was to devise an effective and unbiased method for determining the geographical origin of each soybean variety to mitigate potential fraudulent practices. Through multidimensional and unidimensional analyses, successful identification of differentially expressed metabolites (DEMs) and differentially expressed genes (DEGs) was achieved, yielding statistically significant outcomes. Integration of the metabolomics and transcriptomics datasets facilitated the construction of a correlation network model capable of distinguishing soybeans originating from different geographical locations, leading to the identification of significant biomarkers exemplifying noteworthy distinctions. To validate the feasibility of this method in practical applications, partial least squares discriminant analysis was employed to differentiate soybean samples from the nine regions. The results convincingly showcased the applicability and reliability of this approach in accurately pinpointing the geographical origin of soybeans. Distinguishing itself from prior research in soybean traceability, this study incorporates an integrated analysis of metabolomics and transcriptomics data, thereby unveiling biomarkers that offer a more precise differentiation of soybean traits across distinct regions, thereby bridging a critical research gap within the soybean traceability domain. This innovative dual-data integration analysis methodology is poised to enhance the accuracy of soybean traceability tools and lay a new foundation for future agricultural product identification research.

Publisher

Springer Science and Business Media LLC

Reference66 articles.

1. Zappi A, Melucci D, Scaramagli S et al (2018) Botanical traceability of unifloral honeys by chemometrics based on head-space gas chromatography. Eur Food Res Technol 244(12):2149–2157

2. Jamet JP, Chaumet JM (2016) Soybean in China: adaptating to the liberalization. Ocl 23(6):D604

3. Aung MM, Chang YS (2014) Traceability in a food supply chain: Safety and quality perspectives. Food Control 39:172–184

4. Jiang ZQ (2018) Research progress on traceability of grain origin produced by mineral element fingerprint analysis technology. Farm Products Process 5:70–71

5. Zhao S, Zhao Y (2021) Application and preparation progress of stable isotope reference materials in traceability of agricultural products. Crit Rev Anal Chem 51(8):742–753

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3