Dual delivery of bone morphogenetic protein-2 and basic fibroblast growth factor from nanohydroxyapatite/collagen for bone tissue engineering

Author:

Hu Yuqian,Zheng Linlin,Zhang Jinhui,Lin Lijuan,Shen Yue,Zhang Xiaoyan,Wu Buling

Abstract

AbstractBackgroundIn bone tissue engineering, the fabrication and biocompatibility of scaffold are crucial. Among many scaffold materials, nanohydroxyapatite (nHAP) and collagen (COL) are chosen as building materials of scaffold. At the same time, growth factors were also used to modify the scaffolds.MethodsIn this study, blending and freeze drying methods were adopted together in order to build basic fibroblast growth factor (bFGF)-bone morphogenetic protein-2 (BMP-2)-nHAP/COL scaffolds. ELISA was applied to test the release of bFGF and BMP-2 on the scaffold. The flow cytometry was used to identify bone marrow mesenchymal stem cells (BMSCs). Scanning electron microscope was adopted to observe scaffolds and cells morphology. BMSCs were seeded on the scaffolds to test the biological compatibility in vitro. Cells were counted to detect early cell adhesion. Cell counting kit-8 assay was adopted to detect cell proliferation and alkalinephosphatase assay was applied to detect cell activity.ResultsThe characterization of bFGF-BMP-2-nHAP/COL scaffolds meets the requirements of ideal bone tissue engineering scaffolds. BMSCs that were isolated, purified and passaged satisfied the needs of further experiments. The growth status of cells on bFGF-BMP-2-nHAP/COL scaffolds was satisfactory. Cell adhesion was the highest in the bFGF-BMP-2-nHAP/COL scaffolds group. The cell viability and ALP activity of bFGF-BMP-2-nHAP/COL scaffolds group were the highest.ConclusionTaken together, bFGF-BMP-2-nHAP/COL scaffolds have good biocompatibility in vitro and promote adhesion, proliferation, differentiation of BMSCs.

Funder

the Liaoning Science & Technology Project

Publisher

Springer Science and Business Media LLC

Subject

Organic Chemistry,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3