Effect of pyrolysis conditions on chemical properties of carbonized rice husks for efficient NH4+ adsorption

Author:

Kang Yun-Gu,Lee Jae-Han,Lee Jun-Yeong,Kim Jun-Ho,Oh Taek-KeunORCID,Sung Jwa-Kyung

Abstract

AbstractAmmonium ions (NH4+) are commonly found in contaminated water and are a contributing factor to water eutrophication. Carbonized rice husk, derived from various biomass sources, possesses a porous structure, and its characteristics are influenced by the feedstock and pyrolysis conditions. Hence, this study aimed to investigate the applicability of carbonized rice husk as an absorbent for NH4+ removal. The adsorption kinetics were analyzed using the Pseudo-first-order and Pseudo-second-order models, while the adsorption characteristics were assessed using the Langmuir and Freundlich isotherms. The adsorption rate of NH4+ by carbonized rice husk increased until 240 min and then gradually approached equilibrium state. Notably, the highest NH4+ adsorption rate was observed in pH 7.1 carbonized rice husk 36.045 mg/g∙min. Moreover, the NH4+ adsorption capacity exhibited an increase with increasing concentration and quantity of the solution. The pH of the carbonized rice husk was found to influence the NH4+ adsorption process, with higher pH values corresponding to increased NH4+ adsorption rates. The NH4+ sorption rate carbonized rice husk was higher in pH 11.0 at 31.440 mg/g compared to pH 6.1 (7.642 mg/g) and pH 7.1 (10.761 mg/g). These findings highlight the impact of pyrolysis conditions on the adsorption characteristics of carbonized rice husk.

Funder

Rural Development Administration, Republic of Korea

Publisher

Springer Science and Business Media LLC

Subject

Organic Chemistry,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3