Translocation of residual ethoprophos and tricyclazole from soil to spinach

Author:

Yuan Xiu,Lee Junghak,Han Heeju,Ju Boeun,Park Eunyoung,Shin Yongho,Lee Jonghwa,Kim Jeong-HanORCID

Abstract

AbstractThe dissipation of ethoprophos and tricyclazole in soil and their translocation tendency to spinach were investigated. Prior to field trials, the analytical method for the determination of these pesticide residues was optimized and validated on soil and spinach. The field trial was conducted under greenhouse conditions for two different pretreatment periods with the pesticides. After treating with pesticides 30 (PBI-30) and 60 days (PBI-60) before seeding, soil samples were collected on different days for the dissipation study of soil. Spinach samples were harvested from the soil, and 50% and 100% mature spinach samples were collected. The initial amounts of ethoprophos residue in the PBI-60 and PBI-30 soils were 0.21 and 2.74 mg/kg, respectively, and these both decreased to less than 0.01 mg/kg on the day of spinach harvest. Similar initial residues of tricyclazole were observed in the PBI-60 (0.87 mg/kg) and PBI-30 soils (0.84 mg/kg), and these decreased to 0.44 and 0.34 mg/kg, respectively. The half-lives of ethoprophos in the soils were calculated as 7.6 and 4.8 days, respectively, while relatively long half-lives of 36.5 and 77.0 days were calculated for tricyclazole. According to the pesticide residue amounts in the spinach, the translocation rate from the soil to the spinach was determined. In the case of ethoprophos, the residual amount was already rapidly degraded in the soil, and the translocation rate could not be confirmed. On the other hand, for tricyclazole, it was confirmed that 1.19 to 1.61% of the residual amount in soil was transferred to spinach. According to these results, safe management guidelines for tricyclazole in soil were suggested considering the maximum residue limit on spinach.

Funder

Rural development administration of Korea

Publisher

Springer Science and Business Media LLC

Subject

Organic Chemistry,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3