Effect of sequential presoaking and chlorine dioxide treatment on the inactivation of pathogenic Escherichia coli and Salmonella spp. on sprout seeds

Author:

Hung Nguyen Bao,Park Woon-Ra,Yun Bohyun,Seo Dong Cheol,Kim Won-Il,Kim Hyun-Ju,Han Sanghyun,Kim Se-RiORCID

Abstract

AbstractThis study was conducted to evaluate the effect of sequential presoaking and chlorine dioxide (ClO2) on the reduction of pathogenic Escherichia coli and Salmonella spp. in alfalfa. When unsoaked and presoaked alfalfa were exposed to 200 ppm ClO2 for 15 min, the population of E. coli and Salmonella spp. on presoaked seeds reduced more than those on unsoaked seeds by 2.07 and 1.43 log CFU g−1 (p < 0.05), respectively. To determine the optimal concentration and treatment time to reduce pathogenic E. coli and Salmonella spp. in alfalfa seeds immersed in water for 5 h, presoaked seeds were exposed to four different concentrations of ClO2 (50, 100, 150, and 200 ppm) for 15, 30, 45, and 60 min. The most effective condition to eliminate E. coli and Salmonella spp. from alfalfa seeds was sequential immersion in water for 5 h and 200 ppm ClO2 treatment for 1 h. After the optimal condition was applied to eight kinds of sprout seeds, the pathogens were completely inactivated in all seeds, except radish seeds. Growth of pathogenic E. coli and Salmonella spp. during sprouting after ClO2 treatment of alfalfa seeds was also completely inactivated. However, the germination rate of seeds did not significantly decrease after ClO2 treatment. In addition, ClO2 residues were not present in any sprout during 3 days of cultivation. These results demonstrated that sequential presoaking and 200 ppm ClO2 treatment is the optimal seed disinfection treatment to prevent foodborne diseases associated with sprout consumption.

Funder

Agricultural Science and Technology Development

Publisher

Springer Science and Business Media LLC

Subject

Organic Chemistry,General Biochemistry, Genetics and Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3