Potential endocrine-disrupting effects of iprodione via estrogen and androgen receptors: evaluation using in vitro assay and an in silico model

Author:

Yang Ji-Yeon,Lim Jeong-Hyun,Park Soo-Jin,Jo Youmi,Yang Si Young,Paik Min-Kyoung,Hong So-Hye

Abstract

AbstractThis study was conducted to provide evidence, using in vitro and in silico testing methods, regarding the adverse effects of iprodione, a representative dichlorophenyl dicarboxamide fungicide, on the endocrine system. In the present study, we used the HeLa9903 stably transfected transactivation assay (OECD TG 455), 22Rv1/MMTV_GR‒KO androgen receptor transcriptional activation assay (OECD TG 458), and toxicity prediction using VEGA QSAR. Our results showed that iprodione had no estrogen receptor antagonistic or androgen receptor agonistic effects; however, iprodione was determined to be an estrogen receptor agonist (log PC10 value is less than − 9) and androgen receptor antagonist (log IC30 value is − 4.58) without intrinsic toxicity against the human cell lines used in this study. VEGA QSAR was used to evaluate five substances with structures similar to that of iprodione. Among them, four chemicals were found to have positive androgen receptor and aromatase activities and have been observed to be developmental toxicants. These results suggest that iprodione regulates steroid hormone receptor interactions and is a potential reproductive toxicant.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3