Zygnema sp. as creator of copper oxide nanoparticles and their application in controlling of microbial growth and photo-catalytic degradation of dyes

Author:

Alsalamah Sulaiman A.,Alghonaim Mohammed Ibrahim,Bakri Marwah Marwah,Abdelghany Tarek M.ORCID

Abstract

AbstractRecently, focus has been placed on renewable sources, as they can be provided in large quantities at the lowest possible cost, in order to create nanoparticles. One of these sources is Zygnema moss which used in the present investigation to create Copper oxide nanoparticles (CuONPs). Several phenols and flavonoids were identified the extract of Zygnema sp. via analysis of High performance liquid chromatography. These constituents served as reducing and stabilizing agents for CuONPs. Characterization of CuONPs was performed via UV-visible spectrum that demonstrated peak at 252 nm, Transmission electron microscopy that showed spherical CuONPs with mean diameter of 30.06 nm, Fourier transform infrared spectroscopy that confirm that presence of several functional groups aided to formation of CuONPs. The crystallographic pattern of CuONPs was recorded via X-ray diffraction analysis. Antimicrobial potential of CuONPs was compared to copper acetate and antibiotic/antifungal drug. CuONPs exhibited more inhibition zones against S. aureus (32 ± 0.1 mm), E. coli (36 ± 0.1 mm), S. typhi (27 ± 0.2 mm), E. faecalis (37 ± 0.1 mm), C. albicans (34 ± 0.3 mm) than copper acetate and antibiotic/antifungal drug. Promising MIC values of were recorded against S. aureus, E. coli, and S. typhi. CuONPs at 200 ppm inhibited the growth of C. lunata, F. oxysporium, A. flavus, and Mucor circinelloid with inhibtion of 76.92, 73.33, 63.63, and 53.84%, respectively regarded the control 100% growth. The photocatalytic role of CuONPs was recorded for degradation of reactive red (RR195) and reactive blue (RB) dyes with maximum degradation of 84.66% and 90.82%, respectively at 75 min. Moreover, the optimal dyes degradation was 84.66 and 90.82%, respectively at 40 °C.

Funder

Al-Imam Muhammad Ibn Saud Islamic University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3