Author:
Hwang Hyun Young,Kim Seong Heon,Kim Myung Sook,Park Seong Jin,Lee Chang Hoon
Abstract
AbstractCo-composting of organic wastes is globally recognized to be effective method to dispose two or more wastes at once and minimize drawbacks of composting such as gases emissions and nutrient reduction. In this study, pilot-scale experiments were conducted to characterize the co-composting process of chicken manure with cow manure (CC), swine manure (CS), plant residues plus mushroom media (CRM), on emissions of greenhouse gas, and ammonia, compost quality, maturity and their correlations. The results showed that cumulative flux of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) and ammonia (NH3) widely ranged like 38,211–50,830, 172–417, 98–142 and 118–927 g kg dm−1 day−1 respectively. It indicated the importance of selection for co-composting material. The NH3 emission was significantly increased by 4.3–7.9 times in CS and CRM, compared to OC and CC. Both of CS and CRM also showed longer thermophilic phase and later maturation were also observed in both treatments. Temperature was positively correlated with gases (P < 0.001) except CH4, and nitrogen content, C/N ratio and nitrate nitrogen significantly affected emission of carbon and nitrogen (P < 0.001). In conclusion, for chicken manure composting, sole chicken manure or combination with cow manure could be suitable composting method to improve compost quality and minimize gases losses.
Publisher
Springer Science and Business Media LLC
Subject
Organic Chemistry,General Biochemistry, Genetics and Molecular Biology
Reference46 articles.
1. Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G (2013) Tackling climate change through livestock a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome
2. Won S, Ahmed N, You BG, Shim S, Kim SS, Ra C (2018) Nutrient production from Korean poultry and loading estimations for cropland. J Anim Sci Technol 60:3
3. KOSIS (Korean Statistical Information Service). 2015. http://kosis.kr/eng/statisticsList/statisticsList_01List.jsp?vwcd=MT_ETITLE&parentId=A Accessed 9 Apr 2015
4. Nyamangara J, Gotosa J, Mpofu SE (2001) Cattle manure effect on structural stability and water relation capacity of granitic soil in Zimbabwe. Soil Tillage Res 62:157–162
5. Hepperly P, Lotter D, Ulsh CZ, Reider C (2009) Compost, manure and synthetic fertilizer influences crop yields, soil properties, nitrate leaching and crop nutrient content. Compost Sci Util 17:117–126
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献