A comprehensive database of human and livestock fecal microbiome for community-wide microbial source tracking: a case study in South Korea

Author:

Song Hokyung,Unno TatsuyaORCID

Abstract

AbstractFecal waste from livestock farms contains numerous pathogens, and improperly managed waste may flow into water bodies, causing water-borne diseases. Along with the popularization of high-throughput technologies, community-wide microbial source-tracking methods have been actively developed in recent years. This study aimed to construct a comprehensive fecal microbiome database for community-wide microbial source tracking and apply the database to identify contamination sources in the Miho River, South Korea. Total DNA was extracted from the samples, and the 16 S rRNA gene was amplified to characterize the microbial communities. The fecal microbiome database was validated by developing machine-learning models that predict host species based on microbial community structure. All machine learning models developed in this study showed high performance, where the area under the receiver operating characteristic curve was approximately 1. Community-wide microbial source tracking results showed a higher contribution of fecal sources to the contamination of the main streams after heavy rain. In contrast, the contribution of fecal sources remained comparatively stable in tributaries after rainfall. Considering that farms are more concentrated upstream of tributaries compared to the main streams, this result implies that the pathway for manure contaminants to reach the main streams could be groundwater rather than surface runoff. Systematic monitoring of the water quality, which encompasses river water and groundwater, should be conducted in the future. In addition, continuous efforts to identify and plug abandoned wells are necessary to prevent further water contamination.

Funder

National Research Foundatio

Chungbuk National University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3