Insights into the abundance, expression and diversity of key denitrification genes in an ecologically managed greenhouse agricultural soil

Author:

Hernández Maqueda R.ORCID,Ballesteros I.ORCID,Meca D.,Linacero R.ORCID,del Moral F.ORCID

Abstract

AbstractUnderstanding the bacteria associated with nitrification and denitrification is crucial for comprehending the processes that lead to nitrous oxide emissions in agricultural greenhouse soils. Therefore, it is important to determine their abundance and expression to gain insight into these processes.The aim of this study was to explore the bacterial communities associated with denitrification in a greenhouse agricultural soil amended with crop residues and manure for six years. For this purpose, we proceeded to detect and quantify the genes nirK and nirS and the gene nosZ through clone library construction, sequencing, phylogenetic analysis, and quantitative polymerase chain reaction (qPCR). Sequence analysis based on the clone library revealed that many of the nirS or nirK genes detected were not closely related to known denitrifier bacteria, but some of the nosZ sequences were related to the genera such as Pseudomonas, Halomonas, and Marinobacter. Furthermore, the qPCR revealed a high abundance of DNA copies in nirK, 6.08 × 109 ± 1.16 × 109, while nirS and nosZ showed lower values, 9.05 × 106 ± 1.65 × 106 and 8.71 × 106 ± 1.44 × 106, respectively. However, the highest expression rate was observed for nirS (mRNA/DNA ratio = 3.10 × 10− 3), while nirK and nosZ showed 10-fold lower expression rates (4.4 × 10− 4 and 3.5 × 10− 4, respectively). The results of this work provide a preliminary overview of the diversity, abundance and expression of key genes associated with the denitrification process in this type of soil and are a starting point for further studies to understand how this type of soil management can influence the denitrification process.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3