Abstract
AbstractUnderstanding the bacteria associated with nitrification and denitrification is crucial for comprehending the processes that lead to nitrous oxide emissions in agricultural greenhouse soils. Therefore, it is important to determine their abundance and expression to gain insight into these processes.The aim of this study was to explore the bacterial communities associated with denitrification in a greenhouse agricultural soil amended with crop residues and manure for six years. For this purpose, we proceeded to detect and quantify the genes nirK and nirS and the gene nosZ through clone library construction, sequencing, phylogenetic analysis, and quantitative polymerase chain reaction (qPCR). Sequence analysis based on the clone library revealed that many of the nirS or nirK genes detected were not closely related to known denitrifier bacteria, but some of the nosZ sequences were related to the genera such as Pseudomonas, Halomonas, and Marinobacter. Furthermore, the qPCR revealed a high abundance of DNA copies in nirK, 6.08 × 109 ± 1.16 × 109, while nirS and nosZ showed lower values, 9.05 × 106 ± 1.65 × 106 and 8.71 × 106 ± 1.44 × 106, respectively. However, the highest expression rate was observed for nirS (mRNA/DNA ratio = 3.10 × 10− 3), while nirK and nosZ showed 10-fold lower expression rates (4.4 × 10− 4 and 3.5 × 10− 4, respectively). The results of this work provide a preliminary overview of the diversity, abundance and expression of key genes associated with the denitrification process in this type of soil and are a starting point for further studies to understand how this type of soil management can influence the denitrification process.
Publisher
Springer Science and Business Media LLC
Reference41 articles.
1. Yin C, Fan F, Song A, Cui P, Li T, Liang Y (2015) Denitrification potential under different fertilization regimes is closely coupled with changes in the denitrifying community in a black soil. Appl Microbiol Biotechnol 99(13):5719–5729. https://doi.org/10.1007/s00253-015-6461-0
2. Qasim W, Zhao Y, Wan L, Lv H, Lin S, Gettel GM, Butterbach-Bahl K (2022) The potential importance of soil denitrification as a major N loss pathway in intensive greenhouse vegetable production systems. Plant Soil 471(1–2):157–174. https://doi.org/10.1007/s11104-021-05187-2
3. IPCC (2013) In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 1535
4. U.S. EPA (2023) Overview of greenhouse Gases Environmental Protection Agency. From Natural Sources, W., DC, USA
5. Braker G, Fesefeldt A, Witzel KP (1998) Development of PCR Primer Systems for Amplification of Nitrite Reductase Genes (nirK and nirS) to detect denitrifying Bacteria in environmental samples. Appl Environ Microbiol 64 (10). https://journals.asm.org/journal/aem