Degradation of low density polyethylene by Bacillus species

Author:

Yao Zhuang,Seong Hyeon Jeong,Jang Yu-SinORCID

Abstract

AbstractSince its invention, polyethylene (PE) has brought many conveniences to human production and life. In recent years, however, environmental pollution and threats to human health caused by insufficient PE recycling have attracted widespread attention. Biodegradation is a potential solution for preventing PE pollution. In this study, Bacillus subtilis and Bacillus licheniformis, which are widespread in the environment, were examined for their PE degradation abilities. Biodegradation of low-density polyethylene (LDPE) was assessed by weight loss, Fourier transform infrared spectroscopy (FTIR), and high performance liquid chromatography (HPLC) analyses. Weight losses of 3.49% and 2.83% were observed for samples exposed to strains B. subtilis ATCC6051 and B. licheniformis ATCC14580 for 30 days. Optical microscopy revealed obvious structural changes, such as cracks, pits, and roughness, on the surfaces of the microorganism-exposed LDPE sheets. Oxidation of the LDPE sheet surfaces was also demonstrated by the FTIR-based observation of carbon-unsaturated, –OH, –NO, –C=C, and –C–O bonds. These results support the notion that B. subtilis ATCC6051 and B. licheniformis ATCC14580 can degrade PE and could potentially be used as PE-biodegrading microorganisms. Further research is needed to examine potential relevant degradation mechanisms, such as those involving key enzymes.

Funder

Rural Development Administration, Republic of Korea

Publisher

Springer Science and Business Media LLC

Subject

Organic Chemistry,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3