Formulation of abamectin and plant oil-based nanoemulsions with efficacy against the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae) under laboratory and field conditions

Author:

Ismail TamerORCID,Keratum Attia,El-Hetawy Lamia

Abstract

AbstractDue to the harmful effects of synthetic chemical acaricides on ecosystems and human health, there is increasing interest in the use of nanotechnology to fabricate eco-friendly nanoemulsions based on plant oils in the field of spider mite control. In this study, nanoemulsions of abamectin, garlic, and neem oils were prepared by a high-energy approach and characterized by transmission electron microscopy. The droplet sizes of all tested nanoemulsions were less than 100 nm. The acaricidal activities of the prepared nanoemulsions compared to abamectin were evaluated against a susceptible laboratory strain of Tetranychus urticae Koch (Acari: Tetranychidae) under laboratory and field conditions. The results showed that abamectin nanoemulsion was the most toxic compound against adult females of T. urticae followed by abamectin emulsion. Neem nanoemulsion had moderate toxicity and garlic nanoemulsion had the lowest toxicity. The effects of tested compound residues on egg deposition and egg hatching in descending order were as follows: abamectin nanoemulsion > abamectin emulsion > neem oil nanoemulsion < garlic oil nanoemulsion. In the field experiment, all tested compounds were effective in reducing the population density of T. urticae in the motile stage, with mean reductions ranging between 66.08% and 95.24% for all compounds. The most effective compound was abamectin nanoemulsion. The results of the present study demonstrate that nanoemulsion enhanced the biological activity of abamectin. Further, neem and garlic oil nanoemulsions have potential utility as environmentally friendly acaricides in integrated pest management programs.

Funder

Kafr El Shiekh University

Publisher

Springer Science and Business Media LLC

Subject

Organic Chemistry,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3