Abstract
AbstractIn this study, Arabidopsis thaliana was used as a model system to assess the toxic effects of cadmium on plant development and growth. The germination and growth of A. thaliana was inhibited by Cd(II), and the inhibitory effect was dosage-dependent. The significant decrease of germination rates and root growths of A. thaliana were observed from 50 mg/L and 25 mg/L of CdCl2, respectively. Although both shoot and root growths were suppressed by Cd(II), root developments were more sensitive to Cd(II) than shoot developments, as evidenced by shoot growths observed over 50 mg/L of CdCl2. In the concordance to this result, it was also observed that the expression of DR5::VENUS, a visual marker of auxin response, was dependent on the Cd(II) concentration and was strongly reduced from 5 mg/L of CdCl2. In addition, the E. coli-based biosensors were employed to quantify accumulated Cd(II) in plants to understand the correlation between toxic effects and Cd(II) in plants. As a result, it was revealed that 0.012 mg/g and 0.138 mg/g of Cd(II) in dried plants were corresponded to the concentration inhibiting root developments and root growths, respectively. Although it needs further investigations, the findings play a significant role in assessing the toxic effects of Cd(II) based on the relationship between the toxic effects and accumulated Cd(II) concentrations in plants.
Funder
Korea Agency for Infrastructure Technology Advancement
BioGreen21 Agri-Tech Innovation Program Rural Development Administration
Publisher
Springer Science and Business Media LLC
Subject
Organic Chemistry,General Biochemistry, Genetics and Molecular Biology
Reference36 articles.
1. Nagajyoti PC, Lee KD, Sreekanth T (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216
2. Voegelin A, Barmettler K, Kretzschmar R (2003) Heavy metal release from contaminated soils: comparison of column leaching and batch extraction results. J Environ Qual 32:865–875
3. Al-Abed SR, Hageman PL, Jegadeesan G, Madhavan N, Allen D (2006) Comparative evaluation of short-term leach tests for heavy metal release from mineral processing waste. Sci Total Environ 364:14–23
4. DalCorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5:663–667
5. Khanam R, Kumar A, Nayak A, Shahid M, Tripathi R, Vijayakumar S et al (2020) Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: bioavailability and potential risk to human health. Sci Total Environ 699:134330
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献