Cherry fruit anthocyanins cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside protect against blue light-induced cytotoxicity in HaCaT cells

Author:

Lee Hyang-Yeol,Kim Jun-SubORCID

Abstract

AbstractBlue light derived from multiple sources, including sunlight, generates reactive oxygen species (ROS) and negatively affects the skin in a manner similar to that of ultraviolet light. Cyanidin-3-O-glucoside (C3OG) and cyanidin-3-O-rutinoside (C3OR) are anthocyanin antioxidants that have protective effects on various tissues and cell types. However, the effects of anthocyanins on blue light-mediated changes remain unconfirmed. In this study, we determined the protective effects of C3OG and C3OR isolated and purified from waste cherry fruits (Prunus serrulata L. var. tomentella Nakai) against the blue light-induced ROS formation and inflammatory responses in HaCaT cells. It is showed that the treatment of C3OG and C3OR significantly reduced the blue light-induced cytotoxicity and ROS production in a dose dependent manner. Furthermore, we found that focal adhesion kinase (FAK) is a major upstream of blue light-induced expression of inflammatory cytokines (TNF-α, IL-6 and IL-8), and these effects were attenuated by C3OG or C3OR treatment. In the initial reaction, blue lights increased the phosphorylation of inhibitory-κB Kinase α (IKKα), c-jun N-terminal kinase (JNK), and p38. The phosphorylation of these intracellular proteins was reduced via FAK inhibitor, NAC (ROS scavenger), and anthocyanin treatments. After 24 h of blue light irradiation, C3OG or C3OR treatment markedly inhibited caspase-3-mediated apoptosis and cleaved-FAK-mediated anoikis, which is cell detachment-induced apoptosis. Therefore, our results indicate that C3OG and C3OR effectively protected human keratinocytes from harmful blue light-induced cytotoxicity and inflammation.

Funder

Ministry of Education

Ministry of SMEs and Startups

Publisher

Springer Science and Business Media LLC

Subject

Organic Chemistry,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3