Author:
Li Shuting,Luo Congwei,Chen Sijia,Zhuang Yiyi,Ji Yue,Zeng Yiqun,Zeng Yao,He Xiaoyang,Xiao Jing,Wang Huizhen,Chen Xiaowen,Long Haibo,Peng Fenfen
Abstract
Abstract
Background
Progressive peritoneal fibrosis is a worldwide public health concern impacting patients undergoing peritoneal dialysis (PD), yet there is no effective treatment. Our previous study revealed that a novel compound, micheliolide (MCL) inhibited peritoneal fibrosis in mice. However, its mechanism remains unclear. Brahma-related gene 1 (BRG1) is a key contributor to organ fibrosis, but its potential function in PD-related peritoneal fibrosis and the relationship between MCL and BRG1 remain unknown.
Methods
The effects of MCL on BRG1-induced fibrotic responses and TGF-β1-Smads pathway were examined in a mouse PD model and in vitro peritoneal mesothelial cells. To investigate the targeting mechanism of MCL on BRG1, coimmunoprecipitation, MCL-biotin pulldown, molecular docking and cellular thermal shift assay were performed.
Results
BRG1 was markedly elevated in a mouse PD model and in peritoneal mesothelial cells cultured in TGF-β1 or PD fluid condition. BRG1 overexpression in vitro augmented fibrotic responses and promoted TGF-β1-increased-phosphorylation of Smad2 and Smad3. Meanwhile, knockdown of BRG1 diminished TGF-β1-induced fibrotic responses and blocked TGF-β1-Smad2/3 pathway. MCL ameliorated BRG1 overexpression-induced peritoneal fibrosis and impeded TGF-β1-Smad2/3 signaling pathway both in a mouse PD model and in vitro. Mechanically, MCL impeded BRG1 from recognizing and attaching to histone H3 lysine 14 acetylation by binding to the asparagine (N1540) of BRG1, in thus restraining fibrotic responses and TGF-β1-Smad2/3 signaling pathway. After the mutation of N1540 to alanine (N1540A), MCL was unable to bind to BRG1 and thus, unsuccessful in suppressing BRG1-induced fibrotic responses and TGF-β1-Smad2/3 signaling pathway.
Conclusion
Our research indicates that BRG1 may be a crucial mediator in peritoneal fibrosis and MCL targeting N1540 residue of BRG1 may be a novel therapeutic strategy to combat PD-related peritoneal fibrosis.
Funder
Natural Science Foundation of Guangdong Province, China
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献