EGFR mutations induce the suppression of CD8+ T cell and anti-PD-1 resistance via ERK1/2-p90RSK-TGF-β axis in non-small cell lung cancer

Author:

Huang Huayan,Zhu Xiaokuan,Yu Yongfeng,Li Ziming,Yang Yi,Xia Liliang,Lu ShunORCID

Abstract

Abstract Background Non-small cell lung cancer (NSCLC) patients with EGFR mutations exhibit an unfavorable response to immune checkpoint inhibitor (ICI) monotherapy, and their tumor microenvironment (TME) is usually immunosuppressed. TGF-β plays an important role in immunosuppression; however, the effects of TGF-β on the TME and the efficacy of anti-PD-1 immunotherapy against EGFR-mutated tumors remain unclear. Methods Corresponding in vitro studies used the TCGA database, clinical specimens, and self-constructed mouse cell lines with EGFR mutations. We utilized C57BL/6N and humanized M-NSG mouse models bearing EGFR-mutated NSCLC to investigate the effects of TGF-β on the TME and the combined efficacy of TGF-β blockade and anti-PD-1 therapy. The changes in immune cells were monitored by flow cytometry. The correlation between TGF-β and immunotherapy outcomes of EGFR-mutated NSCLC was verified by clinical samples. Results We identified that TGF-β was upregulated in EGFR-mutated NSCLC by EGFR activation and subsequent ERK1/2-p90RSK phosphorylation. TGF-β directly inhibited CD8+ T cell infiltration, proliferation, and cytotoxicity both in vitro and in vivo, but blocking TGF-β did not suppress the growth of EGFR-mutated tumors in vivo. Anti-TGF-β antibody combined with anti-PD-1 antibody significantly inhibited the proliferation of recombinant EGFR-mutated tumors in C57BL/6N mice, which was superior to their monotherapy. Mechanistically, the combination of anti-TGF-β and anti-PD-1 antibodies significantly increased the infiltration of CD8+ T cells and enhanced the anti-tumor function of CD8+ T cells. Moreover, we found that the expression of TGF-β1 in EGFR-TKI resistant cell lines was significantly higher than that in parental cell lines. The combination of anti-TGF-β and nivolumab significantly inhibited the proliferation of EGFR-TKI resistant tumors in humanized M-NSG mice and prolonged their survival. Conclusions Our results reveal that TGF-β expression is upregulated in NSCLC with EGFR mutations through the EGFR-ERK1/2-p90RSK signaling pathway. High TGF-β expression inhibits the infiltration and anti-tumor function of CD8+ T cells, contributing to the “cold” TME of EGFR-mutated tumors. Blocking TGF-β can reshape the TME and enhance the therapeutic efficacy of anti-PD-1 in EGFR-mutated tumors, which provides a potential combination immunotherapy strategy for advanced NSCLC patients with EGFR mutations. Graphical Abstract

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3