Author:
Suo Shiteng,Yin Yan,Geng Xiaochuan,Zhang Dandan,Hua Jia,Cheng Fang,Chen Jie,Zhuang Zhiguo,Cao Mengqiu,Xu Jianrong
Abstract
Abstract
Background
To investigate the performance of diffusion-weighted (DW) MRI with mono-, bi- and stretched-exponential models in predicting pathologic complete response (pCR) to neoadjuvant chemotherapy (NACT) for breast cancer, and further outline a predictive model of pCR combining DW MRI parameters, contrast-enhanced (CE) MRI findings, and/or clinical-pathologic variables.
Methods
In this retrospective study, 144 women who underwent NACT and subsequently received surgery for invasive breast cancer were included. Breast MRI including multi-b-value DW imaging was performed before (pre-treatment), after two cycles (mid-treatment), and after all four cycles (post-treatment) of NACT. Quantitative DW imaging parameters were computed according to the mono-exponential (apparent diffusion coefficient [ADC]), bi-exponential (pseudodiffusion coefficient and perfusion fraction), and stretched-exponential (distributed diffusion coefficient and intravoxel heterogeneity index) models. Tumor size and relative enhancement ratio of the tumor were measured on contrast-enhanced MRI at each time point. Pre-treatment parameters and changes in parameters at mid- and post-treatment relative to baseline were compared between pCR and non-pCR groups. Receiver operating characteristic analysis and multivariate regression analysis were performed.
Results
Of the 144 patients, 54 (37.5%) achieved pCR after NACT. Overall, among all DW and CE MRI measures, flow-insensitive ADC change (ΔADC200,1000) at mid-treatment showed the highest diagnostic performance for predicting pCR, with an area under the receiver operating characteristic curve (AUC) of 0.831 (95% confidence interval [CI]: 0.747, 0.915; P < 0.001). The model combining pre-treatment estrogen receptor and human epidermal growth factor receptor 2 statuses and mid-treatment ΔADC200,1000 improved the AUC to 0.905 (95% CI: 0.843, 0.966; P < 0.001).
Conclusion
Mono-exponential flow-insensitive ADC change at mid-treatment was a predictor of pCR after NACT in breast cancer.
Funder
National Natural Science Foundation of China
Clinical Research Plan of Shanghai Shen Kang Hospital Development Center
Medical Engineering Cross Research Foundation of Shanghai Jiao Tong University
Shanghai “Rising Stars of Medical Talent” Youth Development Program (Youth Medical Talents—Medical Imaging Practitioner Program SHWR
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference43 articles.
1. Kaufmann M, von Minckwitz G, Bear HD, Buzdar A, McGale P, Bonnefoi H, et al. Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: new perspectives 2006. Ann Oncol. 2007;18:1927–34.
2. Mougalian SS, Soulos PR, Killelea BK, Lannin DR, Abu-Khalaf MM, DiGiovanna MP, et al. Use of neoadjuvant chemotherapy for patients with stage I to III breast cancer in the United States. Cancer. 2015;121:2544–52.
3. Early Breast Cancer Trialists' Collaborative G. Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials. Lancet Oncol. 2018;19:27–39.
4. Londero V, Bazzocchi M, Del Frate C, Puglisi F, Di Loreto C, Francescutti G, et al. Locally advanced breast cancer: comparison of mammography, sonography and MR imaging in evaluation of residual disease in women receiving neoadjuvant chemotherapy. Eur Radiol. 2004;14:1371–9.
5. Hylton NM, Blume JD, Bernreuter WK, Pisano ED, Rosen MA, Morris EA, et al. Locally advanced breast cancer: MR imaging for prediction of response to neoadjuvant chemotherapy–results from ACRIN 6657/I-SPY TRIAL. Radiology. 2012;263:663–72.