Abstract
Abstract
Background
The etiology of congenital scoliosis (CS) is complex and uncertain. Abnormal DNA methylation affects the growth and development of spinal development. In this study, we investigated the role of DNA methylation in CS.
Methods
The target region DNA methylation level in the peripheral blood of patients with CS was analyzed. Through in-depth analysis, genes closely related to the growth and development of the vertebra were identified. EdU staining was performed to verify the role of differentially expressed genes in chondrocyte proliferation.
Results
The hypermethylated KAT6B gene was observed in patients with CS, and was positively correlated with the Cobb angle. KAT6B was primarily expressed on chondrocytes. The promoter of KAT6B in CS patients was hypermethylated, and its expression was significantly reduced. Further mechanistic studies revealed that EZH2 mediated trimethylation of lysine 27 on histone H3 of the KAT6B promoter. Overexpression of KAT6B in CS-derived primary chondrocytes can significantly promote chondrocyte proliferation, which may be related to activation of the RUNX2/Wnt/β-catenin signaling pathway.
Conclusion
Epigenetic modification of KAT6B may be a cause of CS. If similar epigenetic modification abnormalities can be detected through maternal liquid biopsy screening, they may provide useful biomarkers for early screening and diagnosis of CS.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献