Author:
Wang Muhong,Deng Chunyu,Yang Cheng,Yan Mingze,Lu Haibo,Zhang Yan,Liu Honghao,Tong Zhekuan,Ma Jiaao,Wang Jiaming,Zhang Yan,Wang Jiahao,Xuan Yuhong,Cheng Haiyue,Zhao Kai,Zhang Jiaqi,Chai Cuicui,Li Mingzhe,Yu Zhiwei
Abstract
AbstractThe occurrence and progression of tumors can be established through a complex interplay among tumor cells undergoing epithelial-mesenchymal transition (EMT), invasive factors and immune cells. In this study, we employed single-cell RNA sequencing (scRNA-seq) and spatially resolved transcriptomics (ST) to evaluate the pseudotime trajectory and spatial interactive relationship between EMT-invasive malignant tumors and immune cells in primary colorectal cancer (CRC) tissues at different stages (stage I/II and stage III with tumor deposit). Our research characterized the spatiotemporal relationship among different invasive tumor programs by constructing pseudotime endpoint-EMT-invasion tumor programs (EMTPs) located at the edge of ST, utilizing evolution trajectory analysis integrated with EMT-invasion genes. Strikingly, the invasive and expansive process of tumors undergoes remarkable spatial reprogramming of regulatory and immunosuppressive cells, such as myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), regulatory T cells (Treg), and exhausted T cells (Tex). These EMTP-adjacent cell are linked to EMT-related invasion genes, especially the C-X-C motif ligand 1 (CXCL1) and CXCL8 genes that are important for CRC prognosis. Interestingly, the EMTPs in stage I mainly produce an inflammatory margin invasive niche, while the EMTPs in stage III tissues likely produce a hypoxic pre-invasive niche. Our data demonstrate the crucial role of regulatory and immunosuppressive cells in tumor formation and progression of CRC. This study provides a framework to delineate the spatiotemporal invasive niche in CRC samples.
Graphical Abstract
Funder
the National Natural Science Foundation of China
the Free Exploration Foundation of Science, Technology and Innovation Commission of Shenzhen Municipality
the Shenzhen Fundamental Research Program
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献