Abstract
Abstract
Background
DNA methylation can regulate the role of long noncoding RNAs (lncRNAs) in the development of lung adenocarcinoma (LUAD). The present study aimed to identify methylation-driven lncRNAs and mRNAs as biomarkers in the prognosis of LUAD using bioinformatics analysis.
Methods
Differentially expressed RNAs were obtained using the edge R package from 535 LUAD tissues and 59 adjacent non-LUAD tissues. Differentially methylated genes were obtained using the limma R package from 475 LUAD tissues and 32 adjacent non-LUAD tissues. Methylation-driven mRNA and lncRNA were obtained using the MethylMix R package from 465 LUAD tissues with matched DNA methylation and RNA expression and 32 non-LUAD tissues with DNA methylation. Gene ontology and ConsensusPathDB pathway analysis were performed to identify functional enrichment of methylation-driven mRNAs. Univariate and multivariate Cox regression analyses were performed to identify the independent effect of each variable for predicting the prognosis of LUAD. Kaplan–Meier curve analysis of DNA methylation and gene expression might provide potential prognostic biomarkers for LUAD patients.
Results
A total of 99 methylation-driven mRNAs and 17 methylation-driven lncRNAs were obtained. Univariate and multivariate Cox regression analysis showed that 6 lncRNAs (FOXE1, HOXB13-AS1_2, VMO1, HIST1H3F, AJ003147.8, ASXL3) were retrieved to construct a predictive model associated with overall survival in LUAD patients. Combined DNA methylation and gene expression survival analysis revealed that 4 lncRNAs (AC023824.1, AF186192.1, LINC01354 and WASIR2) and 8 mRNAs (S1PR1, CCDC181, F2RL1, EFS, KLHDC9, MPV17L, GKN2, ITPRIPL1) might act as independent biomarkers for the prognosis of LUAD.
Conclusions
Methylation-driven lncRNA and mRNA contribute to the survival of LUAD, and 4 lncRNAs and 8 mRNAs might be potential biomarkers for the prognosis of LUAD.
Funder
Major Scientific and Technological Innovation Project of Shandong Province
Science and Technology Foundation of Shandong Province
Medical and Health Technology Innovation Plan of Ji'nan City
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献