Overexpression of E3 ubiquitin ligase Cbl attenuates endothelial dysfunction in diabetes mellitus by inhibiting the JAK2/STAT4 signaling and Runx3-mediated H3K4me3

Author:

Jin Qingsong,Lin Liangyan,Zhao Tiantian,Yao Xiaoyan,Teng Yaqin,Zhang Dongdong,Jin Yongjun,Yang Meizi

Abstract

Abstract Background Diabetes mellitus (DM), a most common chronic disease, is featured with impaired endothelial function and bioavailability of nitric oxide (NO), while E3 ubiquitin ligase appears to alleviate endothelial dysfunction as a promising option for DM treatment. Herein, we aimed to determine whether E3 ubiquitin ligase casitas B-lineage lymphoma (Cbl) alleviates endothelial dysfunction in DM rats by JAK2/STAT4 pathway. Methods A rat model of DM was developed through intraperitoneal injection of streptozotocin, followed by collection of aortic tissues to determine the expression of Cbl, JAK2, runt-related transcription factor 3 (Runx3) and STAT4. Human umbilical vein endothelial cells (HUVECs) were cultured in high glucose (HG) condition to induce DM as an in vitro model. With gain- and loss-function method, we assessed the aberrantly expressed Cb1 on endothelial dysfunction, NO production and apoptosis of HUVECs. Results Cbl was reduced in DM rat tissues and HG-induced HUVECs, where JAK2, Runx3 and STAT4 were elevated. It was found that overexpression of Cbl alleviated endothelial dysfunction by increasing NO production and restoring vasodilation and suppressing apoptosis of HUVECs. Mechanistically, Cb1 enhanced JAK2 ubiquitination and decreased JAK2 and STAT4 expression, where STAT4 improved Runx3 expression by regulating histone H3 lysine 4 trimethylation level. Overexpression of JAK2 and STAT4, or Runx3 increased apoptosis of HUVECs, abrogating the effect of Cb1 on endothelial function. Conclusion In conclusion, Cbl alleviates endothelial dysfunction by inactivation of the JAK2/STAT4 pathway and inhibition of Runx3 expression in DM. These evidence might underlie novel Cbl-based treatment against DM in the future.

Funder

the shandong provincial natural fund

science and technology plan project of yantai

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3