Development and validation of a simple and practical model for early detection of diabetic macular edema in patients with type 2 diabetes mellitus using easily accessible systemic variables

Author:

Wu Guanrong,Hu Yijun,Zhu Qibo,Liang Anyi,Du Zijing,Zheng Chunwen,Liang Yanhua,Zheng Yuxiang,Hu Yunyan,Kong Lingcong,Liang Yingying,Amadou Maman Lawali Dan Jouma,Fang Ying,Liu Yuejuan,Feng Songfu,Yuan Ling,Cao Dan,Lin Jinxin,Yu HonghuaORCID

Abstract

Abstract Objective Diabetic macular edema (DME) is the leading cause of visual impairment in patients with diabetes mellitus (DM). The goal of early detection has not yet achieved due to a lack of fast and convenient methods. Therefore, we aim to develop and validate a prediction model to identify DME in patients with type 2 diabetes mellitus (T2DM) using easily accessible systemic variables, which can be applied to an ophthalmologist-independent scenario. Methods In this four-center, observational study, a total of 1994 T2DM patients who underwent routine diabetic retinopathy screening were enrolled, and their information on ophthalmic and systemic conditions was collected. Forward stepwise multivariable logistic regression was performed to identify risk factors of DME. Machine learning and MLR (multivariable logistic regression) were both used to establish prediction models. The prediction models were trained with 1300 patients and prospectively validated with 104 patients from Guangdong Provincial People’s Hospital (GDPH). A total of 175 patients from Zhujiang Hospital (ZJH), 115 patients from the First Affiliated Hospital of Kunming Medical University (FAHKMU), and 100 patients from People’s Hospital of JiangMen (PHJM) were used as external validation sets. Area under the receiver operating characteristic curve (AUC), accuracy (ACC), sensitivity, and specificity were used to evaluate the performance in DME prediction. Results The risk of DME was significantly associated with duration of DM, diastolic blood pressure, hematocrit, glycosylated hemoglobin, and urine albumin-to-creatinine ratio stage. The MLR model using these five risk factors was selected as the final prediction model due to its better performance than the machine learning models using all variables. The AUC, ACC, sensitivity, and specificity were 0.80, 0.69, 0.80, and 0.67 in the internal validation, and 0.82, 0.54, 1.00, and 0.48 in prospective validation, respectively. In external validation, the AUC, ACC, sensitivity and specificity were 0.84, 0.68, 0.90 and 0.60 in ZJH, 0.89, 0.77, 1.00 and 0.72 in FAHKMU, and 0.80, 0.67, 0.75, and 0.65 in PHJM, respectively. Conclusion The MLR model is a simple, rapid, and reliable tool for early detection of DME in individuals with T2DM without the needs of specialized ophthalmologic examinations.

Funder

National Natural Science Foundation of China

Science and Technology Program of Guangzhou

Outstanding Young Talent Trainee Program of Guangdong Provincial People’s Hospital

GDPH Scientific Research Funds for Leading Medical Talents and Distinguished Young Scholars in Guangdong Province

Talent Introduction Fund of Guangdong Provincial People’s Hospital

launch fund of Guangdong Provincial People’s Hospital for NSFC

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3