Identifying a distinct fibrosis subset of NAFLD via molecular profiling and the involvement of profibrotic macrophages

Author:

He WeiweiORCID,Huang Yinxiang,Shi Xiulin,Wang Qingxuan,Wu Menghua,Li Han,Liu Qiuhong,Zhang Xiaofang,Huang Caoxin,Li Xuejun

Abstract

Abstract Background There are emerging studies suggesting that non-alcoholic fatty liver disease (NAFLD) is a heterogeneous disease with multiple etiologies and molecular phenotypes. Fibrosis is the key process in NAFLD progression. In this study, we aimed to explore molecular phenotypes of NAFLD with a particular focus on the fibrosis phenotype and also aimed to explore the changes of macrophage subsets in the fibrosis subset of NAFLD. Methods To assess the transcriptomic alterations of key factors in NAFLD and fibrosis progression, we included 14 different transcriptomic datasets of liver tissues. In addition, two single-cell RNA sequencing (scRNA-seq) datasets were included to construct transcriptomic signatures that could represent specific cells. To explore the molecular subsets of fibrosis in NAFLD based on the transcriptomic features, we used a high-quality RNA-sequencing (RNA-seq) dataset of liver tissues from patients with NAFLD. Non-negative matrix factorization (NMF) was used to analyze the molecular subsets of NAFLD based on the gene set variation analysis (GSVA) enrichment scores of key molecule features in liver tissues. Results The key transcriptomic signatures on NAFLD including non-alcoholic steatohepatitis (NASH) signature, fibrosis signature, non-alcoholic fatty liver (NAFL) signature, liver aging signature and TGF-β signature were constructed by liver transcriptome datasets. We analyzed two liver scRNA-seq datasets and constructed cell type-specific transcriptomic signatures based on the genes that were highly expressed in each cell subset. We analyzed the molecular subsets of NAFLD by NMF and categorized four main subsets of NAFLD. Cluster 4 subset is mainly characterized by liver fibrosis. Patients with Cluster 4 subset have more advanced liver fibrosis than patients with other subsets, or may have a high risk of liver fibrosis progression. Furthermore, we identified two key monocyte-macrophage subsets which were both significantly correlated with the progression of liver fibrosis in NAFLD patients. Conclusion Our study revealed the molecular subtypes of NAFLD by integrating key information from transcriptomic expression profiling and liver microenvironment, and identified a novel and distinct fibrosis subset of NAFLD. The fibrosis subset is significantly correlated with the profibrotic macrophages and M2 macrophage subset. These two liver macrophage subsets may be important players in the progression of liver fibrosis of NAFLD patients.

Funder

Natural Science Foundation of Fujian Province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3