Identification of ENO1 as a prognostic biomarker and molecular target among ENOs in bladder cancer

Author:

Huang Zhengnan,Yan Yilin,Wang Tengjiao,Wang Zeyi,Cai Jinming,Cao Xiangqian,Yang Chenkai,Zhang Fang,Wu Gang,Shen BingORCID

Abstract

Abstract Background Enolase is an essential enzyme in the process of glycolysis and has been implicated in cancer progression. Though dysregulation of ENOs has been reported in multiple cancers, their prognostic value and specific role in bladder cancer (BLCA) remain unclear. Methods Multiple databases were employed to examine the expression of ENOs in BLCA. The expression of ENO1 was also validated in BLCA cell lines and tissue samples by western blotting and immunohistochemistry. Kaplan–Meier analysis, ROC curve, univariate and multivariate Cox regression were performed to evaluate the predictive capability of the ENO1. Gene ontology (GO) and Gene Set Enrichment Analyses (GSEA) analysis were employed to perform the biological processes enrichment. Function experiments were performed to explore the biological role of ENO1 in BLCA. The correlation of ENO1 with immune cell infiltration was explored by CIBERSORT. Results By analyzing three ENO isoforms in multiple databases, we identified that ENO1 was the only significantly upregulated gene in BLCA. High expression level of ENO1 was further confirmed in BLCA tissue samples. Aberrant ENO1 overexpression was associated with clinicopathological characteristics and unfavorable prognosis. Functional studies demonstrated that ENO1 depletion inhibited cancer cell aggressiveness. Furthermore, the expression level of ENO1 was correlated with the infiltration levels of immune cells and immune-related functions. Conclusions Taken together, our results indicated that ENO1 might serve as a promising prognostic biomarker for prognosticating prognosis associated with the tumor immune microenvironment, suggesting that ENO1 could be a potential immune-related target against BLCA.

Funder

National Natural Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3