The treatment of Qibai Pingfei Capsule on chronic obstructive pulmonary disease may be mediated by Th17/Treg balance and gut-lung axis microbiota

Author:

Jia Yu,He Tiantian,Wu Di,Tong Jiabing,Zhu JieORCID,Li Zegeng,Dong Jingcheng

Abstract

Abstract Background Chronic obstructive pulmonary disease (COPD), a prevalent, progressive respiratory disease, has become the third leading cause of death globally. Increasing evidence suggests that intestinal and pulmonary microbiota dysbiosis is associated with COPD. Researchers have shown that T helper (Th) 17/regulatory T (Treg) imbalance is involved in COPD. Qibai Pingfei Capsule (QBPF) is a traditional Chinese medicine used to treat COPD clinically in China. However, the effects of QBPF intervention on the Th17/Treg balance and microbiota in the gut and lung are still poorly understood. Methods This study divided the rats into three groups (n = 8): control, model, and QBPF group. After establishing the model of COPD for four weeks and administering of QBPF for two weeks, Th17 cells, Treg cells, their associated cytokines, transcription factors, and intestinal and pulmonary microbiota of rats were analyzed. Furthermore, the correlations between intestinal and pulmonary microbiota and between bacterial genera and pulmonary function and immune function were measured. Results The results revealed that QBPF could improve pulmonary function and contribute to the new balance of Th17/Treg in COPD rats. Meanwhile, QBPF treatment could regulate the composition of intestinal and pulmonary microbiota and improve community structure in COPD rats, suppressing the relative abundance of Coprococcus_2, Prevotella_9, and Blautia in the gut and Mycoplasma in the lung, but accumulating the relative abundance of Prevotellaceae_UCG_003 in the gut and Rikenellaceae_RC9_gut_group in the lung. Additionally, gut–lung axis was confirmed by the significant correlations between the intestinal and pulmonary microbiota. Functional analysis of microbiota showed amino acid metabolism was altered in COPD rats in the gut and lung. Spearman correlation analysis further enriched the relationship between the microbiota in the gut and lung and pulmonary function and immune function in COPD model rats. Conclusions Our study indicated that the therapeutic effects of QBPF may be achieved by maintaining the immune cell balance and regulating the gut-lung axis microbiota, providing references to explore the potential biomarkers of COPD and the possible mechanism of QBPF to treat COPD.

Funder

the National Natural Science Foundation of China

the 2021 Universities Collaborative Innovation Project in Anhui Province

the China Postdoctoral Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3