Photopheresis efficacy in the treatment of rheumatoid arthritis: a pre-clinical proof of concept

Author:

Coppard Céline,Bonnefoy Francis,Hannani DalilORCID,Gabert Françoise,Manches OlivierORCID,Plumas Joel,Perruche SylvainORCID,Chaperot LaurenceORCID

Abstract

Abstract Background Despite major advances in rheumatoid arthritis outcome, not all patients achieve remission, and there is still an unmet need for new therapeutic approaches. This study aimed at evaluating in a pre-clinical murine model the efficacy of extracorporeal photopheresis (ECP) in the treatment of rheumatoid arthritis, and to provide a relevant study model for dissecting ECP mechanism of action in autoimmune diseases. Methods DBA/1 mice were immunized by subcutaneous injection of bovine collagen type II, in order to initiate the development of collagen-induced arthritis (CIA). Arthritic mice received 3 ECP treatments every other day, with psoralen + UVA-treated (PUVA) spleen cells obtained from arthritic mice. Arthritis score was measured, and immune cell subsets were monitored. Results ECP-treated mice recovered from arthritis as evidenced by a decreasing arthritic score over time. Significant decrease in the frequency of Th17 cells in the spleen of treated mice was observed. Interestingly, while PUVA-treated spleen cells from healthy mouse had no effect, PUVA-treated arthritic mouse derived-spleen cells were able to induce control of arthritis development. Conclusions Our results demonstrate that ECP can control arthritis in CIA-mice, and clarifies ECP mechanisms of action, showing ECP efficacy and Th17 decrease only when arthritogenic T cells are contained within the treated sample. These data represent a pre-clinical proof of concept supporting the use of ECP in the treatment of RA in Human.

Funder

Etablissement Français du Sang

Agence Nationale Recherche Technologie

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3