Author:
Luo Cida,Zhu Yi,Zhu Zhou,Li Ranxi,Chen Guoqin,Wang Zhang
Abstract
Abstract
Background
Predicting hospital mortality risk is essential for the care of heart failure patients, especially for those in intensive care units.
Methods
Using a novel machine learning algorithm, we constructed a risk stratification tool that correlated patients’ clinical features and in-hospital mortality. We used the extreme gradient boosting algorithm to generate a model predicting the mortality risk of heart failure patients in the intensive care unit in the derivation dataset of 5676 patients from the Medical Information Mart for Intensive Care III database. The logistic regression model and a common risk score for mortality were used for comparison. The eICU Collaborative Research Database dataset was used for external validation.
Results
The performance of the machine learning model was superior to that of conventional risk predictive methods, with the area under curve 0.831 (95% CI 0.820–0.843) and acceptable calibration. In external validation, the model had an area under the curve of 0.809 (95% CI 0.805–0.814). Risk stratification through the model was specific when the hospital mortality was very low, low, moderate, high, and very high (2.0%, 10.2%, 11.5%, 21.2% and 56.2%, respectively). The decision curve analysis verified that the machine learning model is the best clinically valuable in predicting mortality risk.
Conclusion
Using readily available clinical data in the intensive care unit, we built a machine learning-based mortality risk tool with prediction accuracy superior to that of linear regression model and common risk scores. The risk tool may support clinicians in assessing individual patients and making individualized treatment.
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference41 articles.
1. Gianluigi S, Lund LH. global public health burden of heart failure. Card Fail Rev. 2017;3. https://doi.org/10.15420/cfr.2016:25:2.
2. Seferović PM. ESC/HFA guidelines for the diagnosis and treatment of acute and chronic heart failure 2016. J Card Fail. 2017. https://doi.org/10.1016/j.cardfail.2017.08.005.
3. Komanduri S, Jadhao Y, Guduru SS, Cheriyath P, Wert Y. Prevalence and risk factors of heart failure in the USA: NHANES 2013–2014 epidemiological follow-up study. J Commun Hosp Intern Med Perspect. 2017;7(1):15–20. https://doi.org/10.1080/20009666.2016.1264696.
4. Amina G, Amer I, Admir R, Ira T, Selma J, Anes A, Adis K. Predictive value of SAPS II and APACHE II scoring systems for patient outcome in a medical intensive care unit. Acta Med Acad. 2016;45(2):97–103.
5. Izabela K, Rafał Ś, Karolina B, Paweł T, Wojciech S. Validation of APACHE II and SAPS II scales at the intensive care unit along with assessment of SOFA scale at the admission as an isolated risk of death predictor. Anaesthesiol Intensive Therapy. 2019;51(2):107–11.
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献