Assessment of scalability and performance of the record linkage tool E-PIX® in managing multi-million patients in research projects at a large university hospital in Germany

Author:

Hampf ChristopherORCID,Geidel Lars,Zerbe Norman,Bialke MartinORCID,Stahl Dana,Blumentritt Arne,Bahls Thomas,Hufnagl Peter,Hoffmann Wolfgang

Abstract

Abstract Background The identity management is a central component in medical research. Patients are recruited from various sites, which requires an error tolerant record linkage method, to ensure that patients are registered only once. In large research projects or institutions, the identity management has to deal with several thousands or millions of patients. In environments with large numbers of patients the register process could lead to high runtimes caused by record linkage. The Central Biomaterial Bank of the Charité (ZeBanC) searched for an identity management solution, which can handle millions of patients in large research projects with an acceptable performance. The goal of this paper was to simulate the registration of several million patients using the E-PIX service at Charité – Universitätsmedizin Berlin. The E-PIX service was evaluated in terms of needed runtimes, memory requirements, and processor utilization. A total of at least 20 million patients had to be registered. The runtimes to register patients into databases with various sizes should be examined, and the maximum number of patients, which the E-PIX service could handle, should be determined. Methods Tools were set up or developed to measure the needed runtimes, the memory used and the processor usage to register patients into various sizes of databases. To generate runtimes close to reality, modified patient data based on transposed real patient data were used for the simulation. The transposed patient data were sent to E-PIX to measure the runtimes of the registration process. This measurement was repeated for various database sizes. Results E-PIX is suitable to manage multi-million patients within a dataset. With the given hardware, it was possible to register a total of more than 30 million patients. It was possible to register more than 16 thousand patients per day into this database. Conclusions The E-PIX tool fulfills the requirements of the Charité to be used for large research projects. The use of E-PIX is intended for the research context in the Charité.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference12 articles.

1. Lablans M, Borg A, Ückert F. A RESTful interface to pseudonymization services in modern web applications. BMC Med Inform Decis Mak. 2015;15:2.

2. Bialke M, Bahls T, Havemann C, Piegsa J, Weitmann K, Wegner T, et al. MOSAIC—a modular approach to data management in epidemiological studies. Methods Inf Med. 2015;4:364–71.

3. Pommerening K, Helbing K, Ganslandt T, Drepper J. Identitätsmanagement für Patienten in medizinischen Forschungsverbünden lecture notes in informatics. Bonn: Gesellschaft für Informatik; 2012.

4. Havemann C, Fitzer K, Ostrzinski S, Wolff R, Bialke M, Bahls T, et al. Datenschutz- und IT-Sicherheitskonzept für die unabhängige Treuhandstelle der nationalen Kohorte. 1 ed. Greifswald; 2014.

5. Pommerening K, Helbing K, Ganslandt T, Drepper J. Leitfaden zum Datenschutz in medizinischen Forschungsprojekten. Berlin: Medizinisch Wissenschaftliche Verlagsgesellschaft mbH & Co. KG; 2014.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3