A prognostic nomogram integrating novel biomarkers identified by machine learning for cervical squamous cell carcinoma

Author:

Li Yimin,Lu Shun,Lan Mei,Peng Xinhao,Zhang Zijian,Lang JinyiORCID

Abstract

Abstract Background Cervical cancer (CC) represents the fourth most frequently diagnosed malignancy affecting women all over the world. However, effective prognostic biomarkers are still limited for accurately identifying high-risk patients. Here, we provided a combination machine learning algorithm-based signature to predict the prognosis of cervical squamous cell carcinoma (CSCC). Methods and materials After utilizing RNA sequencing (RNA-seq) data from 36 formalin-fixed and paraffin-embedded (FFPE) samples, the most significant modules were highlighted by the weighted gene co-expression network analysis (WGCNA). A candidate genes-based prognostic classifier was constructed by the least absolute shrinkage and selection operator (LASSO) and then validated in an independent validation set. Finally, based on the multivariate analysis, a nomogram including the FIGO stage, therapy outcome, and risk score level was built to predict progression-free survival (PFS) probability. Results A mRNA-based signature was developed to classify patients into high- and low-risk groups with significantly different PFS and overall survival (OS) rate (training set: p < 0.001 for PFS, p = 0.016 for OS; validation set: p = 0.002 for PFS, p = 0.028 for OS). The prognostic classifier was an independent and powerful prognostic biomarker for PFS in both cohorts (training set: hazard ratio [HR] = 0.13, 95% CI 0.05–0.33, p < 0.001; validation set: HR = 0.02, 95% CI 0.01–0.04, p < 0.001). A nomogram that integrated the independent prognostic factors was constructed for clinical application. The calibration curve showed that the nomogram was able to predict 1-, 3-, and 5-year PFS accurately, and it performed well in the external validation cohorts (concordance index: 0.828 and 0.864, respectively). Conclusion The mRNA-based biomarker is a powerful and independent prognostic factor. Furthermore, the nomogram comprising our prognostic classifier is a promising predictor in identifying the progression risk of CSCC patients.

Funder

National Key Scientific Instrument and Equipment Development Projects of China

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3