Molecular imaging of HER2 expression in breast cancer patients using a novel peptide-based tracer 99mTc-HP-Ark2: a pilot study

Author:

Shi Jiyun,Du Shuaifan,Wang Rongxi,Gao Hannan,Luo Qi,Hou Guozhu,Zhou Yidong,Zhu Zhaohui,Wang FanORCID

Abstract

Abstract Background Due to the temporal and spatial heterogeneity of human epidermal growth factor receptor 2 (HER2) expression in breast tumors, immunohistochemistry (IHC) cannot accurately reflect the HER2 status in real time, which may cause misguided treatment decisions. HER2-specific imaging can noninvasively determine HER2 status in primary and metastatic tumors. In this study, HER2 expression in breast cancer patients was determined in vivo by SPECT/CT of 99mTc-HP-Ark2, comparing with PET/CT of 18F-FDG lesion by lesion. Methods A novel HER2-targeted peptide probe 99mTc-HP-Ark2 was constructed. Biodistribution and nanoScan SPECT/CT imaging were performed in mice models. The correlation between the quantified tumor uptake and HER2 expression in tumor cells was analyzed. In the pilot clinical study, a total of 34 breast cancer patients (mean age ± SD: 49 ± 10 y) suspected of having breast cancer according to mammography or ultrasonography were recruited at Peking Union Medical College Hospital, and 99mTc-HP-Ark2 SPECT/CT and 18F-FDG PET/CT were carried out with IHC and fluorescence in situ hybridization as validation. Results Small animal SPECT/CT of 99mTc-HP-Ark2 clearly identified tumors with different HER2 expression. The quantified tumor uptake and tumor HER2 expression showed a significant linear correlation (r = 0.932, P < 0.01). Among the 36 primary lesions in the 34 patients, when IHC (2 +) or IHC (3 +) was used as the positive evaluation criterion, 99mTc-HP-Ark2 SPECT/CT imaging with a tumor-to-background ratio of 1.44 as the cutoff value reflected the HER2 status with sensitivity of 89.5% (17/19), specificity of 88.2% (15/17) and accuracy of 88.9% (32/36), while the 18F-FDG PET/CT showed sensitivity of 78.9% (15/19), specificity of 70.6% (12/17) and accuracy of 75.0% (27/36). In particular, 100% of IHC (3 +) tumors were all identified by 99mTc-HP-Ark2 SPECT/CT imaging. Conclusion 99mTc-HP-Ark2 SPECT/CT can provide a specific, noninvasive evaluation of HER2 expression in breast cancer, showing great potential to guide HER2-targeted therapies in clinical practice. ClinicalTrials.gov Trial registration: NCT04267900. Registered 11th February 2020. Retrospectively registered, https://www.clinicaltrials.gov/ct2/results?pg=1&load=cart&id=NCT04267900.

Funder

National Natural Science Foundation of China

Capital Health Development Scientific Research Project

Chinese Academy of Medical Science Clinical and Translational Medicine Research Foundation

Emergency Key Program of Guangzhou Laboratory

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3