Effects of acute hypoxia on human adipose tissue lipoprotein lipase activity and lipolysis

Author:

Mahat Bimit,Chassé Étienne,Mauger Jean-François,Imbeault Pascal

Abstract

Abstract Background Adipose tissue regulates postprandial lipid metabolism by storing dietary fat through lipoprotein lipase-mediated hydrolysis of exogenous triglycerides, and by inhibiting delivery of endogenous non-esterified fatty acid to nonadipose tissues. Animal studies show that acute hypoxia, a model of obstructive sleep apnea, reduces adipose tissue lipoprotein lipase activity and increases non-esterified fatty acid release, adversely affecting postprandial lipemia. These observations remain to be tested in humans. Methods We used differentiated human preadipocytes exposed to acute hypoxia as well as adipose tissue biopsies obtained from 10 healthy men exposed for 6 h to either normoxia or intermittent hypoxia following an isocaloric high-fat meal. Results In differentiated preadipocytes, acute hypoxia induced a 6-fold reduction in lipoprotein lipase activity. In humans, the rise in postprandial triglyceride levels did not differ between normoxia and intermittent hypoxia. Non-esterified fatty acid levels were higher during intermittent hypoxia session. Intermittent hypoxia did not affect subcutaneous abdominal adipose tissue lipoprotein lipase activity. No differences were observed in lipolytic responses of isolated subcutaneous abdominal adipocytes between normoxia and intermittent hypoxia sessions. Conclusions Acute hypoxia strongly inhibits lipoprotein lipase activity in differentiated human preadipocytes. Acute intermittent hypoxia increases circulating plasma non-esterified fatty acid in young healthy men, but does not seem to affect postprandial triglyceride levels, nor subcutaneous abdominal adipose tissue lipoprotein lipase activity and adipocyte lipolysis.

Funder

Ontario Council on Graduate Studies, Council of Ontario Universities

Institut de recherche de l’Hôpital Montfort scholarship

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference28 articles.

1. Young T, Peppard PE, Gottlieb DJ. Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med. 2002;165:1217–39.

2. Government of Canada PHA of C. What is the Impact of Sleep Apnea on Canadians? 2010. http://www.phac-aspc.gc.ca/cd-mc/sleepapnea-apneesommeil/ff-rr-2009-eng.php. Accessed 30 Sep 2015.

3. Newman AB, Nieto FJ, Guidry U, Lind BK, Redline S, Pickering TG, et al. Relation of sleep-disordered breathing to cardiovascular disease risk factors: the sleep heart health study. Am J Epidemiol. 2001;154:50–9.

4. Samra JS. Sir David Cuthbertson Medal Lecture. Regulation of lipid metabolism in adipose tissue. Proc Nutr Soc. 2000;59:441–6.

5. Coppack SW, Fisher RM, Gibbons GF, Humphreys SM, McDonough MJ, Potts JL, et al. Postprandial substrate deposition in human forearm and adipose tissues in vivo. Clin Sci Lond Engl. 1979;1990(79):339–48.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3